![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Конгруэнцией на алгебре A = <A; Σ> (Σ – сигнатура алгебры состоит только из функциональных символов) называется такое отношение эквивалентности , при котором для любого
, любого n-местного символа
произвольных наборов (a1, a2, …,an), (b1, b2, …,bn)
An, если a1θb1,a2θb2, …, anθbn, то f(a1, a2, …,an)θf(b1, b2, …,bn), т.е. все операции согласованы с отношением эквивалентности θ.
Пример. Для двухместной операции сложения это выглядит так: для любых x и y из A и любых ,
элемент a+b принадлежит классу θ(x+y).
Лемма. Отношение является конгруэнцией на алгебре < Z; +,
>.
Наибольший общий делитель чисел a и b обозначается (a,b) или НОД(a,b). Два целых числа a и b называются взаимно простыми если (a,b) = 1.
Теорема. Тогда и только тогда элемент a кольца Zm имеет обратный (т.е. элемент a-1 такой, что a a-1 = 1 ), когда ( a,m) = 1.
Теорема. Кольцо вычетов < Zm; +, > тогда и только тогда является полем, когда m простое число.
Замечание
1. Для построения логической теории используются формализованные языки (непустое множества алфавита, синтаксиса и семантики), которые являются средством познания мира и средством выражения мысли.
δ = ‹ A, S1, S2› (A - символы алфавита, S1 - синтаксис, S2 - семантика).
2. В рамках формализированных языков строятся логические теории, с помощью которых решаются логические задачи.
3. Во множестве формул языка выделяют класс формул - аксиомы (логич. закон, базис) Например, выражение x не x = 1
4. Выделяют множество переходов, т.е. с помощью переходов от одной формулы к другой находят правильные умозаключения.
Контрольные вопросы
Лекция № 7
Для математиков XIX в., занимавшихся алгеброй логики, наиболее важной проблемой было развитие технических приемов оперирования с элементарными утверждениями булевой алгебры, подобных тем, которые имеются в элементарной алгебре.
Х. Карри. Основания математической логики. М.: Мир,- 1969, стр. 420
Дата публикования: 2014-11-04; Прочитано: 293 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!