![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Физический смысл этих свойств стохастических индикаторов заключается в следующем. Если переменная
случайна, то в предикате
константа
определяет границу детерминированного множества
, при попадании в которое случайной величины
индикаторы
и
принимают значение 1. В этом случае достоверность событий
и
равна 1.
В дважды неопределенном предикате
переменная
определяет границу “неопределённого” (“случайного”) множества
, при попадании в которое случайной величины
индикаторы могут принимать уже любые значения на интервале (0,1]. Это объясняется тем, что в данном случае как размеры, так и расположение множества
и вероятность попадания случайной величины
в такое множество будет также случайной.
При этом вероятность
представляет собой функцию распределения случайной величины 

а вероятность предиката
будет уже представлять собой функцию случайного аргумента – случайный индикатор
, поэтому
(7.17)
Причём левая часть выражения (7.17) представляет собой число – математическое ожидание индикатора
, а правая часть – случайную величину – функцию случайного аргумента
- индикатор
[7,12].
Кроме того, понятие стохастического индикатора может быть получено непосредственно из вероятности
, которая, в действительности, является случайной величиной, поскольку она зависит только от случайных величин
и
. Следовательно, она является случайным индикатором
этого события
. (7.18)
То же самое можно сказать и о вероятности
, следовательно,

При известных функциях распределения
и
случайных величин
и
математические ожидания
и
с учетом (7.16) определяются следующим образом
(7.19)
Таким образом, математические ожидания
и
стохастических индикаторов совпадают со значениями вероятностей (7.11) и (7.12), полученных на основе классических методов. Это означает, что классические методы позволяют определить только одну числовую характеристику вероятностей (7.11), (7.12). В то время как методы теории стохастической индикации являются более информативными и позволяют получить функции распределения случайных величин
и
, которые полностью характеризуют указанные случайные величины и позволяют получить гарантированные значения вероятностей
и
.
При этом переменные, находящиеся в левых частях предикатов
и
являются управляющими переменными, а соответствующие им переменные в правых частях называются управляемыми переменными.
Например, при испытаниях и эксплуатации управляющей (трансформирующей) переменной является нагрузка
, а сопротивляемость
является управляемой (трансформируемой) переменной. С другой стороны, на этапе проектирования сопротивляемость
является управляющей (трансформирующей) переменной, а
– управляемой переменной. Так, в предикатах (2.45) и (2.46), левая часть является управляющей, а правая – управляемой.
Дата публикования: 2014-11-02; Прочитано: 326 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
