Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Инсоляция (in-sol, in - внутрь, solis - солнце) — облучение поверхностей солнечным светом (солнечной радиацией). Инсоляцией называют облучение поверхности, пространства параллельным пучком лучей, поступающих с направления, в котором виден в данный момент времени центр солнечного диска. Этот термин используется в основном в гигиене, архитектуре и строительной светотехнике. Различают астрономическую, вероятную и фактическую инсоляцию.
Астрономическая инсоляция определяется вращениями Земли вокруг Солнца и собственной оси, наклоненной под углом 66,55° к эклиптике. Земному наблюдателю она представляется гармоническим колебанием положения солнечной параллели относительно небесного экватора с периодом в 365 суток и угловым фазовым смещением (склонением Солнца).
Вероятная инсоляция зависит от состояния атмосферы и облачного покрова. Продолжительность вероятной инсоляции на территории Российской Федерации составляет около 50 % продолжительности астрономической инсоляции и определяется, в основном, высотой стояния Солнца.
Фактическая инсоляция всегда отличается от вероятной и может быть определена лишь натурными наблюдениями. Фактическая инсоляция зависит от ориентации и конфигурации застройки, оконных проемов, положения расчетного помещения, балконов и лоджий.
Нормирование и расчет инсоляции являются сейчас, пожалуй, наиболее острой светотехнической, экономической и социально-правовой проблемой. С переходом землепользования и строительства на рыночную основу нормы инсоляции жилищ стали главным фактором, сдерживающим стремления инвесторов, владельцев и арендаторов земельных участков к переуплотнению городской застройки с целью получения максимальной прибыли.
Различают геометрические (пространственно-временные) и энергетические методы расчета инсоляции.
Геометрические методы отвечают на вопросы: куда, с какого направления и какой площади сечения, в какое время дня и года и на протяжении какого времени поступает (или не поступает) поток солнечных лучей.
Энергетические методы определяют плотность потока, создаваемую им облученность и экспозицию в лучистых или эффективных (световых, эритемных, бактерицидных и др.) единицах измерения.
Разработка методов, не выходящих за рамки классических разделов математики и физики, в основном была завершена в 70-х гг. XX столетия. В настоящее время созданы алгоритмы и компьютерные программы, позволяющие рассчитывать любые характеристики инсоляции и вызываемых ею фотохимических и биологических эффектов.
Отражение — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).
Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:
На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 7). Взаимное расположение этих лучей определяют законы отражения и преломления света.
Рисунок 7 - Отражение и преломление света.
Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.
Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.
Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.
Законы отражения света
1 Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
2 Угол отражения γ равен углу падения α: γ = α
Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.
На гладкую отражательную поверхность КМ (рис. 8) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.
Рисунок 8 - Построение Гюйгенса.
А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).
Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.
Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.
Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.
Углы САВ = α и DBA = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ.
Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.
Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.
Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 9) происходит от всех шероховатых поверхностей.
Рисунок 9 - Диффузное отражение света.
Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.
Например, 85% белого света отражается от поверхности снега, 75% - от белой бумаги, 0,5% - от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.
Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 10). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.
Рисунок 10 - Зеркальное отражение света
Поглощение света, уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при поглощении света переходит в различные формы внутренней энергии среды; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения. (длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. К оптическим излучениям, помимо воспринимаемого человеческим глазом видимого излучения, относятся инфракрасное и ультрафиолетовое излучения).
Основной закон, описывающий поглощение света, - закон Бугера, который связывает интенсивности I света, прошедшего слой среды толщиной l, и исходного светового потока I0. Не зависящий от I, I0 и l коэффициент kl называется поглощения показателем (ПП, в спектроскопии — поглощения коэффициентом); как правило, он различен для разных длин света l.
Этот закон установил на опыте в 1729 П. Бугер. В 1760 И. Ламберт вывел его теоретически из очень простых предположений, сводящихся к тому, что при прохождении слоя вещества интенсивность светового потока уменьшается на долю, которая зависит только от ПП и толщины слоя, т. е.
dl / l= - kl dl (28)
(дифференциальная, равносильная первой, запись закона Бугера). Физический смысл закона состоит в том, что ПП не зависит от I и l (это было проверено С. И. Вавиловым экспериментально с изменением I ~ в 1020 раз).
Зависимость kl от l называется спектром поглощения вещества. Для изолированных атомов (например, в разреженных газах) он имеет вид набора узких линий, т. е. kl отличен от 0 лишь в определённых узких диапазонах длин волн (шириной в десятые, сотые доли).
Эти диапазоны соответствуют частотам собственных колебаний электронов внутри атомов, "резонирующих" с проходящим излучением и поэтому поглощающих из него энергию. Спектры поглощение света отдельных молекул также соответствуют собственным частотам, но гораздо более медленных колебаний внутри молекул самих атомов, которые значительно тяжелее электронов. Молекулярные спектры поглощение света занимают существенно более широкие области длин волн, т. н. полосы поглощения, шириной от единиц до тысяч. Наконец, поглощение света жидкостями и твёрдыми телами обычно характеризуется очень широкими областями (тысячи и десятки тысяч) с большими значениями kl и плавным ходом его изменения. Качественно это можно объяснить тем, что в конденсированных средах сильное взаимодействие между частицами приводит к быстрой передаче всему коллективу частиц энергии, отданной светом одной из них. Другими словами, со световой волной "резонируют" не только отдельные частицы, но и многочисленные связи между ними. Об этом свидетельствует, например, изменение поглощение света молекулярными газами с ростом давления — чем выше давление (чем сильнее взаимодействие частиц), тем "расплывчатее" полосы поглощения, которые при высоких давлениях становятся сходными со спектрами поглощение света жидкостями.
Дата публикования: 2014-11-03; Прочитано: 3264 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!