Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Генератор на полевом транзисторе. В основу генератора (рис. 11.10) положен заряд конденсатора-постоянным током, который задается полевым транзистором VT4. Скорость заряда конденсатора определяется резистором R10. Нарастающее напряжение подается на базу транзистора эмиттерного повторителя, выход которого подключен к триггеру — транзисторы VT1 и VT2. Выходной сигнал триггера поступает на базу транзистора VT3 для сброса напряжения на конденсаторе.
В исходном состоянии транзисторы VT2 и VT3 закрыты. Как только напряжение на конденсаторе достигнет б В, срабатывает триггер и открывается транзистор VT3. Конденсатор разряжается через открытый транзистор. При уменьшении напряжения на конденсаторе до 1 В триггер возвращается в исходное состояние. Начинается новый цикл заряда конденсатора.
Приведенные на схеме номиналы элементов позволяют регулировать частоту выходного сигнала от 15 до 30 кГц. Если поставить конденсатор емкостью 0,033 мкФ, то частота выходного сигнала равна 1 кГц.
Рис. 11.10 Рис. 11.11
Генератор сигнала треугольной формы на ОУ. В схеме рис. 11.11 на конденсаторе С формируется сигнал треугольной формы с амплитудой 0,6 В. Заряд и разряд конденсатора осуществляются выходным сигналом ОУ, который автоматически меняется в тот момент, когда напряжение на конденсаторе достигает порога открывания. Порог открывания устанавливается делителем R2 и R3. Частота следования выходного сигнала определяется выражением f=l/4R1C. Для выравнивания наклонов фронта и спада выходного сигнала служит резистор R6.
Формирователь треугольного сигнала. Формирователь рис. 11.12 позволяет получить на выходе сигнал треугольной формы. Амплитуда сигнала достигает 90% напряжения питания при достаточно высокой линейности фронтов.
В основу формирователя положен принцип заряда и разряда конденсатора через генераторы тока, построенные на транзисторах. Коллекторные токи транзисторов определяются опорными напряжениями стабилитронов и эмиттерными резисторами. При отсутствии входного сигнала через транзисторы должны протекать равные токи. Если равенство токов не выполняется из-за разброса номиналов стабилитронов и резисторов, то следует подстроить резистор R4. Появление входного сигнала с амплитудой больше напряжения пробоя стабилитронов вызовет разбаланс коллекторных токов. Положительная полуволна входного сигнала уменьшит ток транзистора VT2. Ток транзистора VT1 останется без изменения. Разностный коллекторный ток будет заряжать конденсатор. С приходом отрицательной полуволны уменьшится коллекторный ток транзистора VT1. Ток транзистора VT2 установится номинальным. Конденсатор будет разряжаться током транзистора VT2. Если амплитуда входного сигнала меньше напряжения питания, то наблюдается прямая зависимость между амплитудами входного и выходного сигналов, а если больше напряжения питания, то амплитуда выходного сигнала постоянна.
Емкость конденсатора рассчитывается по формуле С= 103I/2fUmах (мкФ), где I — ток транзистора; f — частота входного сигнала; Umax — амплитуда выходного сигнала.
Рис. 11.12 Рис. 11.13 Рис. 11.14
Рис. 11.15
Широкодиапазонный генератор сигнала треугольной формы. Генератор сигнала треугольной формы (рис. 11.13) позволяет получить частоту от 0,01 Гц до 0,1 МГц. Выходной сигнал 20 В формируeтся на конденсаторе С4 коллекторными токами транзисторов VT4, VT6. При заряде конденсатора транзисторы VT4 и VT5 открыты, а транзисторы VT3 и VT6 закрыты. Когда напряжение на кон-денсаторе возрастет до уровня, определяемого делителем R1 — R3 транзистор VT1 откроется. Следом за ним откроются транзисторы VT3 и VT6, которые закрывают транзисторы VT4 и VT5 Начнется процесс разряда конденсатора через транзистор VT6 По достижении нижнего уровня откроется транзистор VT2. Этот процесс воз-вращает схему в первоначальное состояние. Вновь начинается заряд конденсатора. Частота выходного сигнала может линейно меняться с помощью резистора R5 с перекрытием в 20 раз. Для конденсатора емкостью 1 нФ и при R5 = 510 кОм частота равна 001 Гц
Формирователь ступенчатого сигнала. В исходном состоянии (рис. 11 14) конденсатор заряжен до напряжения питания Все транзисторы закрыты. Входной импульс положительной полярности открывает транзистор VT1. Через этот транзистор протекает ток который разряжает конденсатор. Напряжение на конденсаторе уменьшается. Второй входной импульс также разрядит конденсатор на дискретное значение напряжения. В результате этого каждый импульс будет ступеньками уменьшать напряжение на конденсаторе Как только напряжение на конденсаторе сравняется с напряжением на делителе R4, R5, открывается транзистор VT2 и наступает релаксационный процесс в составном каскаде. Транзисторы VT2 и VT3 открываются. Происходит процесс заряда конденсатора После этого начинается новый цикл разряда конденсатора.
Генератор трапецеидального сигнала с регулируемой длительностью фронта. В основу генератора (рис. 11.15) положен мультивибратор который управляет работой токозадающих транзисторов VT3 и VT4. Когда транзистор VT2 открыт, через транзистор VT3 протекает зарядный ток конденсатора СЗ. Скорость нарастания напряжения на конденсаторе (или фронт выходного сигнала) зависит от зарядного тока, который регулируется резистором R12 Максимальное напряжение на конденсаторе ограничено стабилитроном VD2. При переключении транзисторов мультивибратора в другое состояние начинается процесс разряда конденсатора. Транзистор VT3 закрывается, а транзистор VT4 открывается. Разрядный ток транзистора VT4 регулируется с помощью резистора R15. Значение этого тока определяет спад выходного сигнала. Частота и скважность выходного сигнала регулируются резисторами R2 и R4. Генератор может работать в широком диапазоне частот, вплоть до 1 МГц. При больших изменениях частоты выходного сигнала необходимо менять номиналы емкостей конденсаторов С1 и С2.
Дата публикования: 2014-11-04; Прочитано: 1431 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!