Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Генератор с независимой регулировкой периода и длительности импульса. Длительность импульсов и интервал между ними в генераторе (рис. 10.1) могут устанавливаться независимо друг от друга в широком диапазоне. Эти параметры генератора определяются разрядом двух конденсаторов, При разряде конденсатора С1 транзистор VT1 закрыт, a VT2 открыт. Когда же разряжается конденсатор С2, то транзистор VT1 открыт, a VT2 закрыт. При открытом транзисторе VT1 конденсатор С1 заряжается Поскольку транзистор VT1 насыщен, то конденсатор С1 заряжается большим базовым током.
Рис. 10.1
Длительность импульса определяется постоянной времени Ti=RiCi, а интервал между импульсами — постоянной времени т2 = С2R4. Для номиналов элементов, указанных на схеме скважность равна 500. При С1=100 мкФ, R1= 150 кОм и С2=б,47 мкФ длительность импульса равна 50 мс, а интервал — 10 с. Эпюры напряжений в точках схемы проиллюстрированы на рисунке.
Рис. 10.2
Генератор инфранизких частот. При включении питания (рис. 10.2) транзистор VT2 находится в открытом состояния. На его эмиттере существует напряжение, равное напряжению источника питания. Положительный перепад напряжения проходит через конденсатор С на затвор полевого транзистора VT3. Полевой транзл-стор закрыт. Начинается процесс заряда конденсатора через резистор R3. Через некоторое время напряжение на конденсаторе станет таким, что полевой транзистор начнет открываться. Это вызовет открывание транзистора УТ1, который, в свою очередь, закроет транзистор VT2. Конденсатор С начнет разряжаться через резистор R4 и открытые n -р переходы транзистора VTJ и полевого транзистора.
Время заряда емкости определяется выражением t3=0,7 CRS, а время разряда tр=0,7 CRz. Эпюры напряжений в точках схемы показаны на рис. 10.2.
Для получения максимально возможного значения t, необходимо сопротивление резистора R3 выбирать большим. Поскольку ток затвора полевого транзистора меньше 10~8 А, то R3 может принимать значения десятков мегаом. Элементы с номиналами, указанными на схеме, позволяют получить период следования импульсов 1,4 с. Температурный дрейф составляет 0,6%/град.
Мостовой генератор. Генератор (рис. 10.3, с) имеет два выхода, где формируются сигналы различной полярности. В коллекторе транзистора VT1 формируется импульс отрицательной полярности, а в коллекторе транзистора VT2 — положительной. После включения питания оба транзистора находятся в закрытом состоянии. Начинается процесс заряда конденсаторов. Конденсатор С1 заряжается через резистор R1, а конденсатор С2 — через резистор R4. На базе транзистора VT1 увеличивается положительный потенциал. В то же время положительный потенциал базы транзистора VT2 уменьшается. Через время T1 = 0,7 C1R1 потенциалы на базах транзисторов сравняются. С этого момента оба транзистора начинают проводить. С открыванием транзистора VT1 конденсатор С2 начнет разряжаться через базовую цепь транзистора VT2 В это же время конденсатор С1 будет разряжаться через базовую цепь транзистора VT1. Оба транзистора окажутся в режиме насыщения. Напряжение на коллекторе транзистора VT1 изменится с 15 до 7,5 В, а на коллекторе транзистора VT2 — от 0 до 7,5 В В этом состоянии транзисторы будут находиться до тех пор, пока базовые токи способны обеспечить коллекторный ток 5 мА. По достижении этого граничного условия оба транзистора перейдут в активную область. Изменение напряжения в коллекторах транзисторов приведет к дальнейшему уменьшению коллекторного тока и в конечном счете к полному закрыванию. Начнется новый цикл работы генератора. Время разряда конденсаторов определяется длительностью импульса 2 мкс. Период следования импульсов равен 70 мкс На рис. 10.3,6 приведены эпюры напряжений в точках схемы.
Рис. 10.3 Рис. 10.4
Рис. 10.5
Последовательная схема генератора. При включении питания схемы (рис. 10.4) транзистор VT1 будет открыт напряжением делителя R1 и R2. Следом откроется транзистор VT2. Напряжение на его коллекторе равно напряжению питания. Начинается процесс заряда конденсатора. Основной цепью заряда будет резистор R4. Напряжение на конденсаторе увеличивается до 6 В. После этого следует закрывание транзистора VT1, а затем и транзистора VT2. Плюсовое напряжение на конденсаторе будет уменьшаться через резистор R6. Наступит момент, когда напряжение на конденсаторе сравняется с напряжением в базе транзистора VT1. С этого момента транзисторы VT1 и VT2 открываются. Начинается новый цикл работы генератора Длительность импульса определяется постоянной времени RiCi, а интервал между импульсами - постоянной времени R8Ci. При указанных на схеме номиналах импульсы выходного сигнала имеют период следования 2 кГц.
Высокочастотный генератор. Преобразователь постоянного напряжения в частоту (рис. 10.5, а) построен на одном транзисторе, который работает в лавинном режиме. В этом режиме транзистор имеет S-образную вольт-амперную характеристику. Входное напряжение может меняться до 10 В с девиацией частоты выходного сигнала 40 — 50% от максимальной частоты 35 МГц. Крутизна преобразования 10 МГц/В.
В исходном состоянии, когда управляющее напряжение равно нулю, конденсатор разряжается через резистор R4. Как только напряжение на конденсаторе спадет до уровня включения транзистора, конденсатор через открытый транзистор быстро заряжается. Затем процесс повторяется. Напряжение на конденсаторе имеет пилообразную форму. На выходе генератора формируются импульсы с амплитудой 5 В, длительностью десятки наносекунд и временем нарастания до 4 не. Пропорциональность изменения частоты выходного сигнала от управляющего напряжения достигается подбором сопротивления резистора R2. Для R2=Q,5 кОм нелинейность составляет 0,8%, а для R2 = 2 кОм — 0,4%.
Применяемые в схеме транзисторы типа ГТ313А имеют малое напряжение пробоя эмиттерного перехода. Чтобы не произошло открывания эмиттерного перехода напряжением на конденсаторе, в цепь включен диод VD1. Для устранения пробоя эмиттерного перехода можно применить следящую ОС, осуществляемую при помощи транзистора VT2 (рис. 105,6). Кроме того, этот транзистор позволяет повысить нагрузочную способность схемы, если сигнал снимать с эмиттера, и обеспечивает более высокую стабильность частоты.
Рис. 10.6 Рис. 10.7
Формирователь сигнала с большой скважностью. После включения питания (рис. 10.6) конденсатор заряжается через резисторы R1 и R3. Транзистор VT2 закрыт напряжением с делителя R2 и R5. В закрытом состоянии находится также транзистор VT1. По мере заряда конденсатора напряжение в эмиттере увеличивается. Через некоторое время напряжение на конденсаторе превысит напряжение на базе. Транзистор VT2 откроется. Коллекторный ток этого транзистора откроет транзистор VT1. Конденсатор начнет разряжаться через транзистор VT2, резистор R4 и переход база — эмиттер транзистора VT1. Напряжение на конденсаторе падает практически до нуля. Наступает момент, когда транзистор4 VT2 выходит из насыщения. Начинает закрываться транзистор VT1. Коллекторное напряжение его через делитель напряжения R2 и R5 еще больше закрывает транзистор VT2. Возникает лавинообразный процесс, и оба транзистора закрываются. Конденсатор вновь начинает заря-жаться.
Для указанных в схеме номиналов элементов период следования выходных импульсов равен приблизительно 2 с, а длительность импульса 2 мкс.
Низкочастотный генератор. Генератор (рис. 10.7) позволяет получить на выходе сигналы с частотой повторения от нескольких миллисекунд до нескольких секунд. Это достигается непосредственной связью между транзисторами разной проводимости. При включении питания транзистор VT2 открывается и его коллекторный ток открывает транзистор VT1. В цепи коллектора транзистора VT1 устанавливается напряжение, равное напряжению питания. Положительный перепад напряжения пройдет в базу транзистора VT1 и еще больше откроет его. Конденсатор С будет заряжаться через базовую цепь транзистора VT1. Время заряда конденсатора определяет длительность выходного импульса ти = ЯбС. При R& равном нулю, следует учитывать входное сопротивление транзистора VT1, равное 100 — 200 Ом. После того как конденсатор зарядится, транзистор VT2 начинает выходить из насыщения. В этой связи уменьшится и ток коллектора транзистора VT1. Конденсатор начинает разряжаться. Цепь разряда состоит из резисторов R1 и R2. В базе транзистора VT2 формируется отрицательный импульс, который закроет его. Время разряда конденсатора определяет период следования импульсов T = R1C. Для номиналов элементов, указанных на схеме, длительность импульса равна 5 мс, период следования импульсов 1 с.
Рис. 10.8
Генератор сигнала с управляемым периодом. Генератор (рис. 108, а) собран на двух транзисторах разного типа проводимости. При включении питания оба транзистора находятся в закрытом состоянии. Конденсатор С1 заряжается через резисторы R2 и R3. Напряжение в эмиттере VT1 будет уменьшаться во времени. Как только оно сравняется с управляющим напряжением, транзистор VT1 откроется. В открытое состояние переходит и транзистор VT2 Происходит разряд конденсатора через оба транзистора. Открытое состояние транзисторов определяет длительность импульса, равную 1 мкс. После разряда конденсатора начинается новый цикл работы генератора. Зависимость периода следования импульсов от управляющего напряжения пбказана на рис. 108,6
Мостовая управляемая схема генератора. Генератор (рис. 10 9, а) построен на составных транзисторах. Частота импульсов выходного сигнала меняется с помощью напряжения на базе транзистора VT1. С увеличением управляющего напряжения амплитуда импульсов уменьшается UВых=10 В — Uynp. Длительность импульса (2 мкс) остается без изменения. Период следования импульсов определяется цепочкой С2, R3 и напряжением в базе транзистора VT1. При включении питания конденсатор С2 заряжается через резистор R3. В первый момент напряжение на базе транзистора VT2 будет практически равно 10 В. По мере заряда конденсатора это напряжение уменьшается. Когда оно сравняется с напряжением на базе транзистора VT1, произойдет открывание обоих транзисторов.
Рис. 10.9
Рис. 10.10
Конденсатор начнет разряжаться через открытые транзисторы. После разряда конденсатора наступит новый цикл работы. Генератор работает в широком диапазоне частот. С увеличением емкости конденсатора частота импульсов уменьшается, а длительность увеличивается незначительно. Зависимость периода повторения от управляющего напряжения показана на рис. 10.9,6.
Генератор с динамической ОС. Выходной сигнал генератора (рис. 10.10) формируется в тот момент, когда оба транзистора открываются. Положительный перепад напряжения в коллекторе транзистора VT2 передается на базу транзистора VTL Коллекторный Ток этого транзистора еще больше открывает транзистор VT2. В открытом состоянии транзисторы находятся до тех пор, пока конденсатор разряжается через параллельно соединенные резисторы R4 и R5. При закрывании транзистора VT2 отрицательный перепад напряжения на коллекторе закрывает транзистор VTL Конденсатор заряжается через резистор R5. На выходе формируется сигнал, у которого длительность импульса в два раза короче интервала между импульсами. Длительность интервала определяется т«ЗС|R5.
Мостовая схема с пороговым транзистором. Генератор (рис. 10.11, а) собран на мостовом времязадающем элементе, состоящем из цепочек R2, С2 и JR3, С1. В диагональ моста включен транзистор VTL При включении питания в т. 3 будет положительный перепад напряжения, который откроет транзистор VT2. По мере заряда конденсатора С1 напряжение в т. 3 уменьшается. Постепенно нарастает напряжение в т. L Когда напряжение в т. 1 будет больше напряжения в т. 3, транзистор VT2 включится в нормальный режим Увеличение напряжения в т. 2 заставит транзистор VT2 открыться. До этого момента на эмиттере транзистора было большое положительное напряжение. С открыванием транзистора VT2 перейдет в проводящее состояние и транзистор VTL Начинается новый цикл работы генератора. На рис. 10.11,6 приведены эпюры напряжений в точках схемы и зависимость периода повторения от управляющего напряжения.
Рис. 10.11
Рис. 10.12
Генератор с ограниченной ОС. В генераторе (рис. 10 12, а) оба транзистора находятся в открытом состоянии. Конденсатор включен в цепь ПОС В результате изменения напряжения на коллекторе VT2 транзистор VT1 открывается. Затем следует открывание транзистора VT2, который входит в насыщение. Конденсатор С1 заряжается через резистор R1. Через некоторое время базовый ток транзистора VT1 уменьшится настолько, что транзистор VT2 выйдет из насыщения. Положительный перепад в коллекторе транзистора VT2 будет закрывать транзистор VT1. Это приведет к закрыванию обоих транзисторов.,Они будут закрыты до тех пор, пока конденсатор не разрядится через резисторы R1 — R3. Влияние сопротивления резистора R3 на длительность импульсного сигнала показано на рис. 10.12,6. Если вместо резистора R1 включить диод, то генератор будет формировать импульсы длительностью 2 мкс и периодом следования 800 мкс.
Генератор с эмиттерной связью. В момент включения питания (рис. 10.13) транзистор VT2 открыт. В его эмиттере появляется напряжение, равное напряжению питания. Положительный перепад напряжения действует на эмиттер транзистора VT1. Это напряжение закрывает транзистор VT1. Конденсатор С заряжается через резистор R2. В тот момент, когда напряжение в эмиттере будет близко к нулю, транзистор VT1 открывается. Открывание транзистора VT1 изменит напряжение на эмиттере транзистора VT2, что вызовет регенеративный процесс, приводящий к закрыванию транзистора VT2. С этого момента конденсатор С разряжается через резистор КЗ и открытый транзистор VT1. Потенциал эмиттера тра-нзистора VT1 за все время разряда конденсатора остается почти постоянным и близким к нулю. Транзистор VT2 начнет открываться в тот момент, когда напряжение на конденсаторе будет близко к нулю. В пбсле-дующий момент ток через резистор R3 откроет транзистор VT2 и произойдет переключение транзисторов. Наступит новый цикл работы.
Рис. 10.13 Рис. 10.14
Длительность импульса выходного сигнала определяется выражением ти=0,7С7?з, а время восстановления равно тв=0,7СЯ2- Для тех4номиналов элементов, которые указаны на схеме, длительность импульса выходного сигнала равна 75 мкс, а период следования 850 мкс. При увеличении сопротивления резистора R2 до 160 кОм период повторения увеличивается до 7,6 мс.
Генератор с двойным мостом. Генератор (рис. 10.14, а) построен на транзисторах разных типов проводимости. Когда один транзистор открывается, то перепад напряжения в его коллекторе открывает, другой транзистор. Транзисторы либо оба проводят, либо оба закрыты.
При возникновении колебаний конденсаторы заряжаются через открытые транзисторы, а разряжаются через резисторы R2 и R3. Согласование постоянных времени Cl, R2 и С2, R3 стабилизирует период следования импульсных сигналов, длительность которых может быть меньше 1 мкс. Частота следования импульсов определяется выражением f=1,2/R2C2=1,2/R3C2. На рис. 10.14,6 приведены эпюры напряжений в точках схемы и зависимости периода повторения от R3.
Управляемый генератор с зарядным конденсатором. При включении питания (рис. 10.15, а) управляющее напряжение открывает транзисторы VT1 и VT2. Вт.1 будет напряжение 10 В. До этого напряжения конденсатор С1 заряжается через транзистор VTL По мере заряда конденсатора уменьшается коллекторный ток транзистора VT1, который поддерживает напряжение 10 В в т. 1. Наступит момент, когда напряжение в этой точке уменьшится, что послужит причиной закрывания обоих транзисторов. Начнется процесс разряда конденсатора через резисторы R2, R3 и диод VD1. Когда напряжение на коллекторе будет равно управляющему, транзисторы VT1 и VT2 вновь откроются. Время заряда» конденсатора определяет длительность импульса 10 мкс. На рис. 10.15,6 приведены эпюры напряжений в схеме и зависимости длительности периода следования импульсов Т от управляющего напряжения и сопротивления резистора R2.
Рис. 10.15
Мостовая схема генератора с усилителем. В генераторе (рис. 10.16, а) времязадающая цепочка состоит из элементов Cl, R2, а пороговым элементом является транзистор VT1, сигнал которого управляет транзистором VT2, осуществляющим сброс заряда интегрирующего конденсатора. При включении питания в эмиттере транзистора VT1 возникает положительное напряжение, которое по мере заряда конденсатора уменьшается. Как только оно сравняется с управляющим напряжением, открывается транзистор VT1. Происходит процесс разряда конденсатора через транзисторы VT1 и VT2. Частота следования импульсов пропорциональна управляющему напряжению. На рис. 10.16,6 показана зависимость частоты повторения и периода от управляющего напряжения.
Генератор с двойной ОС. Генератор (рис. 10.17) позволяет получить импульсный сигнал большой скважности. Для тех номиналов элементов, которые указаны на схеме, длительность импульса равна 50 мкс, а скважность можно менять от 2 до 2500. Такая большая регулировка скважности возможна благодаря подключению базовых резисторов R1 и R6 к коллектору транзистора VT3.
Рис. 10.16 Рис. 10.17
В момент включения схемы транзисторы VT1 и VT2 закрыты. Конденсатор С1 начинает заряжаться. Напряжение на базе транзистора VT1 увеличивается. Этот транзистор открывается. Своим коллекторным током он открывает транзистор VT2. Положительный перепад напряжения в коллекторе транзистора VT2 еще больше открывает транзистор VTI. Развивается лавинообразный процесс. В результате в открытом состоянии находятся все транзисторы. Коллекторное напряжение 9 В транзистора VT3 закрывает диод и отключает базовые резисторы Rl, R6. Спустя некоторое время конденсатор полностью зарядится и транзистор VT1 закроется. Следом за ним закроются VT2 и VT3. Начнется процесс разряда конденсатора через резисторы R1. и R6. Период следования импульсов определяется постоянной времени т= = Ci[Ri-r-Re]- В коллекторе транзистора VT3 формируются импульсы отрицательной полярности, а в коллекторе VT2 — положительной.
Генератор на составном транзисторе. Генератор (рис. 10.18, о) построен на интегрирующей цепочке Rl, C1 и двух транзисторах. Напряжение на конденсаторе нарастает по экспоненциальному закону. Когда напряжение на конденсаторе достигает значения управляющего, открывается составной каскад, выполняющий функции тиристора. Конденсатор разряжается через открытые транзисторы и резисторы R2 и R4. Время его разряда определяет длительности импульса, равную 15 икс. После окончания разряда конденсатора транзисторы закрываются. Начинается новый цикл работы генератора. Зависимость периода следования импульсов от управляющего напряжения показана на рис. 10.18, 6.
Генератор с интегратором тока. В основу генератора (рис. 10.19, а) положен принцип заряда конденсатора С постоянным током, протекающим через транзистор VT1, Конденсатор заряжается по линейному закону. Когда напряжение на нем станет равным управляющему, открываются транзисторы VT2 и VT3. Происходит процесс разряда конденсатора за время действия импульса 15 мкс.
Амплитуда импульса равна амплитуде управляющего напряжения Период следования импульсов меняется по линейному закону в зависимости от управляющего напряжения (рис 10 19,6)
Рис. 10.18
Рис. 10.19
Генератор с выключающим транзистором. В первоначальном состоянии все транзисторы (рис. 10.20) закрыты. Конденсатор С1 заряжается через резистор R2. Когда напряжение на конденсаторе становится равным напряжению, получаемому с делителя R5 R6 (приблизительно 7 В), транзисторы VT1 и VT2 открываются Разряд конденсатора происходит через транзисторы VT1 и VT2 и базовую цепь VT3. Транзистор VT3 открывается. Время разряда конденсатора равно Tp = C1R4. Затем транзисторы VT1 и V77 закрываются и начинается новый цикл заряда конденсатора, который длится
т3 =0,3C1R2.
Генератор с квадратичным законом изменения напряжения на конденсаторе. В генераторе (рис. 10.21, а) времязадающим устройством являются транзисторы VT1 и VT2 и конденсатор С1 Транзистор VT1 работает в качестве генератора тока. Зарядный ток определяется напряжением на базе этого транзистора Это напряжение меняется в зависимости от потенциала на конденсаторе За счет этого в т. 2 напряжение изменяется по параболическому закону. Быстрый рост напряжения на конденсаторе уменьшает время открывания составного каскада VT3. VT4. для разряда конденсатоpa. Это свойство увеличивает стабильность периода следования импульсов. На рис 1021,6 представлена зависимость периода Т от управляющего напряжения
Рис. 10.20
Рис. 10.21
Дата публикования: 2014-11-04; Прочитано: 6098 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!