Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Релаксатор с нулевой мощностью покоя. В ждущем режиме оба транзистора (рис. 12.1, а) закрыты. Входной импульс положительной полярности открывает транзистор VT1 Коллекторный ток этого транзистора открывает транзистор VT2. Положительный перепад напряжения в коллекторе транзистора VT2 будет поддерживать транзистор VT1 в открытом состоянии до тех пор пока конденсатор разряжается через резистор R1. Входное сопротивление транзистора УП можно считать значительно большим сопротивления резистора R1. Положительное напряжение в базе транзистора VT1 будет постепенно уменьшаться. Наступит момент, когда транзистор VT2 выйдет из насыщения. Отрицательный перепад напряжения в коллекторе транзистора VT2 пройдет в базу транзистора VT1 и еще больше его закроет. Наступает процесс разряда конденсатора. В этом состоянии релаксатор будет ожидать очередного входного импульса.
Рис. 12.1
Длительность импульса определяется постоянной времени RiC. Применение переменного резистора R1 позволяет регулировать длительность выходного импульса (рис. 12.1,6).
Релаксатор на дифференциальном усилителе. Одновибратор (рис. 12.2) имеет относительно малое время возврата в исходное состояние. При отсутствии входного сигнала транзистор VT2 закрыт, а диод находится в проводящем состоянии. Входной сигнал отрицательной полярности открывает транзистор VT1. Положительный перепад напряжения в коллекторе пройдет на базу транзистора VT2 и закроет его. В этом состоянии схема будет находиться до тех пор, пока зарядится конденсатор. Постоянная времени равна RsCi. Порог открывания транзистора VT2 регулируется резистором R6. По окончании импульса конденсатор разрядится через открытый диод и резистор R2. Схема возвращается в исходное состояние.
Релаксатор на составном каскаде. В исходном состоянии оба транзистора (рис. 12.3, а) закрыты. Входной импульс положительной полярности проходит через диод и открывает транзистор VT2. Происходит разряд конденсатора через диод VD1 и резистор R3. При этом транзистор VT1 также находится в открытом состоянии. После прекращения действия входного сигнала транзисторы будут в открытом состоянии, поскольку начинается процесс заряда конденсатора через резистор R1 и транзистор VII. Этот транзистор поддерживает в открытом состоянии и второй транзистор. Транзисторы будут в открытом состоянии до тех пор, пока конденсатор зарядится до напряжения питания. После этого оба транзистора закроются. На рис. 12.3,6 приведена зависимость длительности выходного импульса от емкости конденсатора С1.
Рис. 12.2
Рис. 12.3
Последовательная схема включения транзисторов. Входной сигнал (рис. 12.4, а) открывает транзистор VT1. Одновременно открывается транзистор VT2. Положительная обратная связь через Rl, C1 ускоряет открывание обоих транзисторов. На базе транзистора VT1 возникает положительный перепад напряжения. По мере заряда конденсатора С1 положительное напряжение на базе транзистора VT1 уменьшается. Наступает момент, когда транзистор VT2 выходит из насыщения. Отрицательный перепад напряжения в коллекторе VT2 через конденсатор С1 передается на базу транзистора VT1. Это приводит к быстрому закрыванию обоих транзисторов. На рис. 12.4, а приведены эпюры напряжений в точках схемы и зависимость длительности выходного импульса от емкости конденсатора С1.
Составной каскад с динамической связью. В исходном состоянии оба транзистора (рис. 12.5, а) открыты. Входной сигнал закрывает транзистор VT2. Положительный перепад напряжения на коллекторе этого транзистора закроет второй транзистор. В этом состоянии схема будет находиться до тех пор, пока конденсатор С1 зарядится через резистор R4 до напряжения 3 В, необходимого для открывания транзистора VT1. За открыванием транзистора VT1 следует открывание и транзистора VT2. При больших сопротивлениях резистора R4 (>200 кОм), когда транзистор VT1 переходит в линейный режим, в схеме могут возникнуть автоколебания. Работа схемы проиллюстрирована на рис. 12.5,6.
Рис. 12.4
Рис. 12.5
Релаксатор с малым временем восстановления. Мультивибратор на транзисторах с разными типами проводимости (рис. 12.6, а) имеет малое время восстановления. В исходном состоянии оба транзистора открыты. Входной импульс положительной полярности закрывает транзистор VT1. Отрицательный перепад напряжения на коллекторе этого транзистора закроет диод, а следовательно, и транзистор VT2. Транзистор VT1 будет поддерживаться в закрытом состоянии через резистор R4. Начинается процесс разряда конденсатора через резисторы R2 и R3. Через некоторое время напряжение на конденсаторе будет близко к нулю. После этого последует открывание транзистора VT2, затем и транзистора VT1. С этого момента конденсатор заряжается через открытый транзистор VT1 и базовую цепь транзистора VT2. Длительность импульса на выходе мультивибратора равна 0,5 мс. На рис. 12.6,6 проиллюстрирована работа релаксатора.
Расширители импульсов. Устройство (рис. 12.7, а) предназначено для расширения импульсов отрицательной полярности длительностью порядка микросекунд на время порядка единиц миллисекунд. В исходном состоянии транзистор открыт. Коллекторный ток транзистора выбирается таким, чтобы падение напряжения на резисторах R3 и R4 равнялось напряжению питания. Транзистор находится на границе линейного и насыщенного режимов. Входной импульс отрицательной полярности проходит через диод. С приходом входного сигнала транзистор закрывается. Конденсатор заряжается от входного сигнала. После прекращения действия входного сигнала транзистор будет находиться в закрытом состоянии за счет напряжения на конденсаторе. Начинается процесс разряда конденсатора через резистор R4. Схема рис. 12.7, б близка по принципу действия к описанной. Отличие заключается в использовании составного транзистора на основе полевого и биполярного транзисторов. Время, в течение которого транзистор закрыт, определяется выражением т= R4C lnUBx/UБ (рис. 12.7, а) и т=R4С 1nUвх/U0 (рис. 12.7,6), где UБ — напряжение в базе транзистора; U0 — напряжение отсечки полевого транзистора; Uвх — амплитуда входного сигнала.
Рис. 12.6
Рис. 12.7
Схема задержки фронта импульса. Входной сигнал положительной полярности с амплитудой 10 В подается на мостовую времяза-дающую цепочку (рис. 12.8). На базе транзистора VT1 напряжение падает, а на эмиттере возрастает, В тот момент, когда эти напряжения сравняются, открывается транзистор VT1. За этим последует открывание транзистора VT2. Передний фронт выходного сигнала будет задержан относительно переднего фронта входного сигнала. Время задержки определяется параметрами R1C1 и R2C2. Эту задержку можно приблизительно определить по формуле tзад=R1C1(U1/U2)=0,5.105.104 = 5c.
Рис. 12.8
Рис. 12.9
Управляемый мультивибратор-преобразователь «напряжение — частота». Преобразователь напряжения в частоту построен по схеме релаксационного генератора с индуктивностью в коллекторе (рис. 12.9, а). Частота генератора определяется формулой f=UBX/4WBS10-8, где В — индукция насыщения сердечника трансформатора; 5 — сечение сердечника трансформатора (см2); W — число витков обмотки.
Линейность характеристики преобразования наблюдается в диапазоне входных напряжений от 0,5 д© 5 В, при этом частота генератора меняется от 50 до 250 кГц. Крутизна преобразования равна 50 кГц/В. Амплитуда выходного сигнала пропорциональна уровню входного сигнала. При изменении температуры частота генератора меняется. Если сердечник изготовлен из пермаллоевых сплавов 50НП, 34НК.МП и 65НП, то частота меняется на 8% при изменении температуры от — 50 до +50° С. Для сплавов 79НМ, 80НКС в том же диапазоне температур частота уходит на 10%. На рис. 12.9,6 дана зависимость частоты выходного сигнала от входного напряжения.
Рис. 12.10
Рис. 12.11
Двухвходовый управляемый мультивибратор. Мультивибратор (рис. 12.10, а) может работать при низких питающих напряжениях. Уже начиная с 0,6 В, на обоих выходах возникают колебания. Зависимость периода импульсного сигнала от напряжений на входах показана на рис. 12.10, б. Длительность импульса составляет около 1 мс. При U8x1 = 0,6 В колебания срываются, если на Вход 2 будет подано напряжение более 2,5 В. Мостовой формирователь импульсов. Формирователь (рис. 12.11) построен на двух транзисторах разной проводимости. Положительная обратная связь осуществляется через мост R4, R6, Cl, C2. В исходном состоянии транзисторы закрыты, а конденсаторы моста разряжены. С приходом входного импульса положительной полярности транзистор VTI открывается. Отрицательный потенциал в коллекторе транзистора VT1 откроет транзистор VT2. Коллекторный ток транзистора VT2 будет способствовать еще большему открыванию транзистора VT1. Лавинообразный процесс переведет оба транзистора в насыщение. Схема примет временное устойчивое состояние. Это состояние будет продолжаться до тех пор, пока протекает зарядный ток конденсатора С1. Как только напряжение на конденсаторах С1 и С2 будет близко к 6 В (половине напряжения питания), откроется диод VD2 и зарядный ток резко уменьшится. В результате транзистор VT2 начнет выходить из насыщения. Уменьшение коллекторного тока транзистора VT2 закроет транзистор VII. С этого момента начнется процесс возвращения схемы в исходное состояние. Конденсаторы С1 и С2 разряжаются через диоды VD2, VD3 и резистор R7. Время восстановления лежит в пределах 0,5 — 5% относительно длительности импульса. Длительность импульса определяется выражением Г = т1п2. где т=R4С1 = R6С2.
Дата публикования: 2014-11-04; Прочитано: 1898 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!