Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Движение тел в жидкостях и газах



При движении симметричных тел в жидкостях и газах возникает сила лобового сопротивления, направленная противоположно скорости движения тела. При ламинарном обтекании шара линии тока расположены симметрично относительно плоскости, проходящей через его центр и перпендикулярной к его скорости. Следовательно, согласно уравнению Бернулли, и давление жидкости будет симметричным относительно этой плоскости, силы давления с обеих сторон шара будут уравновешиваться, и сила сопротивления должна быть равна нулю - парадокс Даламбера. Однако это справедливо лишь при отсутствии сил вязкости в жидкости. При ламинарном обтекании тела жидкостью сила лобового сопротивления полностью зависит от сил вязкости. Стокс, проведя расчеты, получил формулу для силы сопротивления движению шара

F = 6p·h·r·v, (5.13)

где r - радиус шара; v - его скорость; h - коэффициент вязкости.

При возрастании скорости движения тела, начиная с некоторого значения числа Рейнольдса, обтекание тела становится турбулентным, в поверхностном слое поток отрывается от поверхности тела, в результате чего позади тела возникают вихри. Давление в образующейся за телом вихревой области в согласии с уравнением Бернулли оказывается пониженным, поэтому результирующая сила будет отлична от нуля и лобовое сопротивление увеличится.

При обтекании несимметричных тел кроме силы лобового сопротивления возникает подъемная сила. Например, для крыла самолета скорость обтекания его верхней части существенно больше, чем нижней. Согласно уравнению Бернулли давление воздуха в нижней части крыла будет больше, чем сверху. В результате возникает подъемная сила крыла самолета.

ЛЕКЦИЯ 8




Дата публикования: 2014-11-04; Прочитано: 514 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...