![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
В данном случае и сила Лоренца имеет только магнитную составляющую
. Уравнением движения частицы, записанном в декартовой системе координат, в этом случае является:
.
Рассмотрим сначала случай, когда частица влетает под прямым углом к силовым линиям магнитного поля (рис.13.3).
Рис.13.3. Движение заряженной частицы в магнитном поле ().
В системе координат, показанной на рис.13.3, ,
, и уравнение движения принимает вид:
,
откуда следует, что вектор полного ускорения частицы лежит в плоскости, перпендикулярной вектору
. Легко убедиться также в том, что вектор ускорения
перпендикулярен вектору скорости частицы
и составляет вместе с вектором
правую тройку векторов (как и должно быть по свойствам силы Лоренца). Действительно,
.
Таким образом, ускорение частицы в каждый момент времени t направлено к центру кривизны траектории и играет роль нормального (центростремительного) ускорения. Модуль ускорения равен:
.
Траекторией движения является окружность , радиус R которой находим из условия:
, то есть
, откуда:
.
Период обращения частицы
Отметим, что период обращения и соответственно угловая скорость движения частицы не зависят от линейной скорости
.
Рассмотрим теперь случай, когда частица влетает под углом α к силовым линиям магнитного поля (рис.13.4).
![]() |
Разложим вектор скорости на две составляющие:
- параллельную вектору
и
- перпендикулярную
. Поскольку составляющая силы Лоренца в направлении
равна нулю, она не может повлиять на величину
. Что касается составляющей
, то этот случай был рассмотрен выше. Таким образом, движение частицы можно представить как наложение двух движений: одного – равномерного перемещения вдоль направления силовых линий поля со скоростью
, второго – равномерного вращения в плоскости, перпендикулярной
. В итоге траекторией движения будет винтовая линия (рис.13.4).
Шаг винтовой линии определяется по формуле:
, где
.
Радиус витка находим по формуле:
Направление, в котором закручивается винтовая линия, зависит от знака заряда частицы. Если заряд частицы положительный, то винтовая линия закручивается против часовой стрелки, если смотреть вдоль направления , и наоборот – по часовой стрелке, если заряд частицы отрицательный.
Дата публикования: 2014-11-04; Прочитано: 2099 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!