Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Движение заряженной частицы в однородном постоянном электрическом поле



В данном случае и сила Лоренца имеет только электрическую составляющую . Уравнением движения частицы в этом случае является:

.

Рассмотрим две ситуации: а) и б) .

а) (рис.13.1).

Рис.13.1. Движение заряженной частицы в электрическом поле ().

Изменение кинетической энергии частицы на пути d происходит за счет работы силы :

, откуда

где - ускоряющее напряжение.

В частности, если начальная скорость частицы , то

.

Время пролета частицы в электрическом поле и пройденный путь находим из уравнений:

б) (рис.13.2).

Рис.13.2. Движение заряженной частицы в электрическом поле ().

В данном случае проекции уравнения движения частицы на координатные оси дают:

.

Координаты частицы в момент времени t составляют:

; .

Исключая из этих уравнений параметр t, находим уравнение траектории частицы:

Видим, что траекторией движения частицы является парабола.

Определим смещение следа частицы на экране, отстоящем от конденсатора на расстоянии b (рис.13.2):

,

где - смещение частицы по вертикали, полученное ею в электрическом поле к моменту вылета из конденсатора ; - смещение частицы после вылета из конденсатора.

Таким образом, имеем:

.





Дата публикования: 2014-11-04; Прочитано: 997 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...