Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема о циркуляции магнитного поля. Магнитное напряжение



Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл: , где - проекция вектора на направление касательной к линии контура в данной точке.

Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:

.

Магнитное поле не является потенциальным, оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.

Как известно, интеграл, взятый между двумя любыми точками 1 и 2 в электрическом поле, есть электрическое напряжение между этими точками:

.

По аналогии мы можем ввести понятие «магнитного напряжения», определив его как:

.

Вычислим магнитное напряжение между двумя точками 1 и 2, взятыми на силовой линии магнитного поля прямолинейного проводника с током (рис.10.3).

Рис.10.3. К вычислению магнитного напряжения проводника с током.

Напряженность магнитного поля на расстоянии r от оси проводника определяется по формуле:

.

Тогда:

,

где - длина дуги окружности, вдоль которой производится интегрирование.

При обходе по всей силовой линии (окружности) угол и, следовательно:

.

Мы видим, что при обходе по замкнутому контуру, охватывающему проводник с током, циркуляция магнитного поля оказывается отличной от нуля и численно равной силе тока, текущегов проводнике; также она не зависит от формы и размеров выбранного контура.

Если контур, охватывающий проводник, не является плоским, то при перемещении вдоль контура радиальный отрезок, соединяющий проводник с текущей точкой контура, будет не только поворачиваться вокруг проводника, но и перемещаться вдоль него. Однако суммарный угол поворота проекции этого отрезка на плоскость, перпендикулярную току, все равно будет равен 2π, то есть результат останется тем же.

В том случае, когда контур не охватывает проводник с током, радиальный отрезок при обходе контура будет поворачиваться сначала в одну сторону, а потом в другую. При этом суммарный угол поворота (с учетом знака направления обхода) будет равен нулю.

В общем случае, если контур охватывает несколько проводников с током (рис.10.4),

Рис.10.4. К формулировке теоремы о циркуляции магнитного поля.

то обобщением полученного результата будет написание выражения, составляющего содержание теоремы о циркуляции магнитного поля:

,

где в правой части стоит алгебраическая сумма всех токов, охваченных данным контуром, причем ток считается положительным, если его направление связано с направлением обхода контура правилом правого винта и отрицательным, если ток имеет противоположное направление.





Дата публикования: 2014-11-04; Прочитано: 830 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...