Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл: , где - проекция вектора на направление касательной к линии контура в данной точке.
Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:
.
Магнитное поле не является потенциальным, оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.
Как известно, интеграл, взятый между двумя любыми точками 1 и 2 в электрическом поле, есть электрическое напряжение между этими точками:
.
По аналогии мы можем ввести понятие «магнитного напряжения», определив его как:
.
Вычислим магнитное напряжение между двумя точками 1 и 2, взятыми на силовой линии магнитного поля прямолинейного проводника с током (рис.10.3).
Рис.10.3. К вычислению магнитного напряжения проводника с током.
Напряженность магнитного поля на расстоянии r от оси проводника определяется по формуле:
.
Тогда:
,
где - длина дуги окружности, вдоль которой производится интегрирование.
При обходе по всей силовой линии (окружности) угол и, следовательно:
.
Мы видим, что при обходе по замкнутому контуру, охватывающему проводник с током, циркуляция магнитного поля оказывается отличной от нуля и численно равной силе тока, текущегов проводнике; также она не зависит от формы и размеров выбранного контура.
Если контур, охватывающий проводник, не является плоским, то при перемещении вдоль контура радиальный отрезок, соединяющий проводник с текущей точкой контура, будет не только поворачиваться вокруг проводника, но и перемещаться вдоль него. Однако суммарный угол поворота проекции этого отрезка на плоскость, перпендикулярную току, все равно будет равен 2π, то есть результат останется тем же.
В том случае, когда контур не охватывает проводник с током, радиальный отрезок при обходе контура будет поворачиваться сначала в одну сторону, а потом в другую. При этом суммарный угол поворота (с учетом знака направления обхода) будет равен нулю.
В общем случае, если контур охватывает несколько проводников с током (рис.10.4),
Рис.10.4. К формулировке теоремы о циркуляции магнитного поля.
то обобщением полученного результата будет написание выражения, составляющего содержание теоремы о циркуляции магнитного поля:
,
где в правой части стоит алгебраическая сумма всех токов, охваченных данным контуром, причем ток считается положительным, если его направление связано с направлением обхода контура правилом правого винта и отрицательным, если ток имеет противоположное направление.
Дата публикования: 2014-11-04; Прочитано: 830 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!