Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определение параметров уравнения регрессии



Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Аналитически связь между ними описывается уравнениями:

и так далее.

Определить тип уравнения можно, исследуя зависимость графически, однако существуют более общие указания, позволяющие выявить уравнение связи, не прибегая к графическому изображению. Если результативный и факторный признаки возрастают одинаково, то это свидетельствует о том, что связь между ними линейная, а при обратной связи – гиперболическая. Если результативный признак увеличивается в арифметической прогрессии, а факторный значительно быстрее, то используется параболическая или степенная регрессия.

Оценка параметров уравнений регрессии (a0, a1, и a2 - в уравнении параболы второго порядка) осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметров модели (a0,a1), при которых минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по выбранному уравнению регрессии:

Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид:

где n – объем исследуемой совокупности (число единиц наблюдения).

В уравнениях регрессии параметр a0 показывает усредненное влияние на результативный признак неучтенных в уравнении факторных признаков; коэффициент регрессии a1 показывает, на сколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения.

Например, имеются данные, характеризующие деловую активность закрытого акционерного общества: прибыль (млн. руб.) и затраты на 1 руб. произведенной продукции (таблица 10.2).

Предположим наличие линейной зависимости между рассматриваемыми признаками.

Таблица 10.2 – Зависимость между прибылью и затратами на 1 руб.

произведенной продукции

Система нормальных уравнений для данного примера имеет вид:

Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии:

Построение моделей множественной регрессии включает несколько этапов:

1 Выбор формы связи (уравнения регрессии);

2 Отбор факторных признаков;

3 Обеспечение достаточного объема совокупности.

Выбор типа уравнения затрудняется тем, что для любой формы зависимости можно выбрать целый ряд уравнений, которые в определенной степени будут описывать эти связи. Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации.

Важным этапом построения уже выбранного уравнения множественной регрессии является отбор и последующее включение факторных признаков. С одной стороны, чем больше факторных признаков включено в уравнение, тем оно лучше описывает явление. Однако модель размерностью 100 и более факторных признаков сложно реализуема и требует больших затрат машинного времени. Сокращение размерности модели за счет исключения второстепенных, экономически и статистически несущественных факторов способствует простоте и качеству ее реализации. В то же время построение модели регрессии малой размерности может привести к тому, что такая модель будет недостаточно адекватна исследуемым явлениям и процессам.

Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена на основе интуитивно-логических или многомерных статистических методов анализа.

Аналитическая форма связи результативного признака от ряда факторных выражается и называется многофакторным (множественным) уравнением регрессии или моделью связи.

Линейное уравнение множественной регрессии имеет вид:

Параметры уравнения могут быть определены графическим методом, методом наименьших квадратов и так далее.





Дата публикования: 2015-11-01; Прочитано: 3947 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...