![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Все одномерные плотности вероятности - это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора X и главной диагональю ковариационной матрицы B. Кроме того, подвектор вектора
из k элементов, где
также распределен нормально.
Если все коэффициенты корреляционной или ковариационной матрицы B (все ее недиагональные элементы) равны нулю, то показать самим, что компоненты случайной величины являются независимыми.

если
,то многомерная плотность распадается на произведение одномерных, значит
независимы.
Теорема.

Проводим линейное преобразование Y=AX. A - квадратная невырожденная матрица, тогда вектор Y также имеет n-мерное нормальное распределение вида

Следствие: Из доказательства теоремы вытекает, что ковариационная матрица

Оператор A переводит произвольную область из арифметического пространства Rn в некоторую область того же пространства.
Рассмотрим произвольную область S, принадлежащую пространству элементарных событий случайной многомерной величины X. Ей соответствует область D в пространстве элементарных событий случайного вектора Y. При этом


Запишем эти вероятности

где |I| - якобиан перехода

Т.к. область S и соответственно D произвольны, то плотность вероятности случайного вектора x равна

n-мерная плотность вероятности случайного вектора Y равна

Преобразуем показатель степени e

Можно показать, что если нормальное распределение имеет данный вид, то B - ее ковариационная матрица

Следствие.
- многомерный нормальный вектор. A - прямоугольная матрица
Тогда Y=AX имеет нормальное распределение вида

Y - m-мерный вектор.
Для определенности положим, что матрица A имеет вид
A = (A1 A2)
A1 - квадратная матрица размером 
A2 - матрица размерности 
Рассмотрим матрицу размерности
. Считается, что m первых столбцов независимы.

равен определителю полученной квадратной матрицы и не равен нулю.
E - единственная квадратная матрица размерности 
Следовательно, на основании доказанной теоремы, вектор Y имеет многомерное нормальное распределение.
Z=CX
Компоненты вектора Z имеют вид

Пусть матрица А произвольная, но т.к. ее ранг равен m она содержит m линейно независимых столбцов. Путем перестановки столбцом соберем эти столбцы в первые m. И соответствующим образом пронумеруем компоненты вектора Х. Попадаем в предыдущий случай.
Дата публикования: 2015-11-01; Прочитано: 450 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
