Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент. Работа перемещения проводника и контура с током в магнитном поле



Магнитный момент тока это произведение площади контура, в котором он протекает на силу тока в нем. Магнитный момент направлен перпендикулярно плоскости контура. Это направление можно определить с помощью правила буравчика. Если буравчик вращать по направлению движения тока в контуре, то его поступательное движение укажет направление магнитного момента.

Для наглядности рассмотрим действие магнитного момента тока на примере. Возьмем прямоугольную рамку с током. Поместим ее в постоянное магнитное поле, так чтобы плоскость рамки была параллельна вектору магнитной индукции.

Рисунок 1 — поясняет принцип действия магнитного момента

Как известно на проводник, с током помещённый в магнитное поле действует сила Лоренца. Направление, которой можно определить с помощью правила левой руки. Рассматривая действие силы Лоренца на стороны рамки в отдельности можно прийти к выводу, что на них будут действовать силы равные по величине, но противоположные по знаку.

Поскольку эти силы зависят отдлинны проводника силы тока в нем и угла между направлением тока и вектором магнитной индукции. А ток в этом контуре протекает один и тот же. Длинна сторон рамки одинакова. И стороны рамки находятся параллельно магнитному полю. Но ток движется в противоположные стороны. Значит и силы будут направлены противоположно.

Две другие стороны рамки не будут взаимодействовать с полем поскольку ток в них течет параллельно силовым линиям поля. Следовательно, исходя из закона Лоренца сила, действующая на них, будет равна нулю.

Далее если мысленно провести вдоль рамки вертикальную осевую линию. То силы, действующие на ее края, будут стремиться ее развернуть. До тех пор пока рамка не примет такое положение, при котором все силы не уравновесятся. При этом рамка повернется своей плоскостью перпендикулярно силовым линия поля.

На рамку с током I, помещенную во внешнее однородное магнитное поле с индукцией действует момент сил Момент сил выражается соотношением:

M = I S B sin α = p m B sin α,

где S – площадь рамки, α – угол между нормалью к плоскости рамки и вектором Векторная величина где – единичный вектор нормали, называется магнитным моментом рамки. Направление вектора связано с направлением тока в рамке правилом правого винта.

Работа по перемещению проводника и контура с током в магнитном поле

На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. § 111). Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.

Для определения этой работы рассмотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпен­дикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна

Под действием этой силы проводник переместится параллельно самому себе на отрезокd x из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна

так как l d x= d S — площадь, пересекаемая проводником при его перемещении в маг­нитном поле, B d S= поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,

(121.1)

т. е. работа по перемещению проводника с током в магнитном поле равна произведе­нию силы тока на магнитный поток, пересеченный движущимся проводником. Получен­ная формула справедлива и для произвольного направления вектора В.

Вычислим работу по перемещению замкнутого контура с постоянным то­ком I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М', изоб­раженное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами проводника: AВС и CDА.

Работаd A, совершаемая силами Ампера при рассматриваемом перемещении кон­тура в магнитном поле, равна алгебраической сумме работ по перемещению провод­ников AВС (d A 1) и CDA (d A 2), т. е.

(121.2)

Силы, приложенные к участку CDA контура, образуют с направлением перемеще­ния острые углы, поэтому совершаемая ими работа dA 2 > 0.. Согласно (121.1), этаработа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении потокdФ0 сквозьповерхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конеч­ном положении. Следовательно,

(121.3)

Силы, действующие на участок AВС контура, образуют с направлением перемеще­ния тупые углы, поэтому совершаемая ими работаd A 1<0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно,

(121.4)

Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы:

где dФ2 1 ='— изменение магнитного потока сквозь площадь, ограниченную контуром с током. Таким образом,

(121.5)

Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном.перемещении контура в магнитном поле:

(121.6)

т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Формула (121.6) остается справедливой для контура любой формы в про­извольном магнитном поле.





Дата публикования: 2015-11-01; Прочитано: 10456 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...