Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Дисперсия случайной величины



Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от своего математического ожидания (если последнее существует):

D(x) = M((x-M(x))2).

Для дискретной случайной величины:

Если дискретная случайная величина может принимать бесконечное число значений, сумма в правой части будет представлять собой ряд.

Для чего подсчитывают дисперсию? Математическое ожидание само по себе не дает нам верного представления о характере исследуемого явления, о том, как может изменяться случайная величина. Мы узнаем только ее среднее значение при большом числе экспериментов, но не можем судить о том, каков в среднем разброс ее значений вокруг этого числа. Судить об этом позволяет дисперсия. Отклонения при ее вычислении берутся в квадрате, так как в противном случае отклонения в разные стороны (значения больше и меньше среднего) компенсировали бы друг друга. Выбор для избавления от знака именно возведения в квадрат, а не какого-либо другого действия (например, взятия по модулю) объясняется тем, что на этом факте основывается доказательство некоторых важных свойств дисперсии, изучаемых математической статистикой.

Приведенное выше выражение для дисперсии является неудобным при проведении практических вычислений, поэтому выведем другое.

Итак,

Приведем без доказательства некоторые свойства дисперсии:

1) Дисперсия неотрицательна (по определению):

D(x) 0

2) Дисперсия постоянной равна нулю:

с – const D(c) = 0

Например, если работник получает постоянную зарплату х = 30 (тыс. руб.), то ее дисперсия будет равна нулю (в самом деле, характеристика рассеяния нулевая).

3) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

с – const D(cx) = c2D(x)

Например, пусть дисперсия заработной платы работника равна 4 (х –заработная плата, D(х) = 4). Другой работник всегда получает на 20% больше, чем первый, т.е. заработная плата второго работника равна 1,2*х. Тогда дисперсия заработной платы второго работника равна D(1,2*х) =
= 1,22*D(х) = 1,44*4 = 5,76.

4) Для независимых случайных величин дисперсия их суммы равна сумме дисперсий:

D(x + y) = D(x) + D(y) (для независимых х и y)

Например, пусть дисперсия заработной платы одного работника равна 4 (х – его заработная плата, D(х) = 4), а другого – 5 (y – его заработная плата, D(y) = 5). Тогда дисперсия суммарной заработной платы составит D(x +
+ y) = D(x) + D(y) = 4 + 5 = 9. Однако, выполнить расчет таким образом можно лишь в случае, когда заработные платы этих работников не зависят друг от друга. Если они зависимы, воспользоваться формулой нельзя.

Следует отметить, что дисперсия разности двух случайных величин будет равна тоже сумме дисперсий (а не разности). Это следует из свойств (3) и (4), поскольку при возведении в квадрат сомножителя (-1) получают 1.

Свойство (4) будет верным не только для двух, но для любого конечного числа случайных величин.

5) При увеличении (уменьшении) всех значений случайной величины на константу, ее дисперсия не изменится (это следует из свойств (2) и (4):

с – const D(x - с) = D(x)

Например, если дисперсия среднемесячной зарплаты равна 4, и из зарплаты каждый месяц вычитают 800 руб. на оплату проездного билета, то дисперсия зарплаты за вычетом оплаты проездного будет все равно равна 4.

Например, рассмотрим случайную величину х – количество проданных в день автомобилей. Эта величина измерялась в течение 100 дней, и за это время принимала значения {0; 1; 2; 3; 4} соответственно 18, 15, 28, 15 и 24 число раз. Необходимо определить дисперсию вероятностного распределения х.

Будем считать, что число экспериментов – 100 - достаточно велико, чтобы можно было рассматривать относительную частоту в качестве эмпирической оценки вероятности. Поэтому чтобы определить вероятности, разделим каждую из частот на 100. Представим вероятностное распределение в виде табл.2, приписав к ней две строки для вспомогательных вычислений.

Таблица 2

х          
Р(х) 0,18 0,15 0,28 0,15 0,24  
хР(х)   0,15 0,56 0,45 0,96 M(x) = 2,12
x2Р(х)   0,15 1,12 1,35 3,84 M(x2) = 6,46

= 6,46-2,122 1,97.

Использовать полученную оценку все же представляется затруднительным. Ее нельзя сравнить с математическим ожиданием, так как ее единицы измерения не имеют экономического смысла (“автомобили в квадрате”). Поэтому, чтобы определить, действительно ли разброс количества продаж вокруг величины 2,12 так велик, извлечем корень из дисперсии . Полученный результат имеет те же единицы измерения, что и рассматриваемая случайная величина (в данном случае он измеряется в количестве автомобилей, т.е. в штуках).

Эту величину называют средним квадратическим отклонением (СКО) и обозначают .

СКО = 1,4 (шт.) – много это или мало? Вероятно, если бы объем продаж составлял в среднем, например, 10 машин в день, то такая величина характеризовала бы небольшой разброс. В рассматриваемом случае
М = 2,12 (шт.). Чтобы оценить полученный результат, необходимо подсчитать относительный показатель, который позволит сравнить СКО с математическим ожиданием.

Отношение СКО к математическому ожиданию случайной величины называют коэффициентом вариации: . Он представляет собой безразмерную величину (можно перевести его в проценты, умножив на 100%).

Для рассмотренного примера коэффициент вариации равен 1,4/2,12 =
= 0,66 или 66%.

Рассмотренные выше математическое ожидание, дисперсия, СКО и коэффициент вариации представляют собой числовые характеристики случайной величины. Кроме них, существуют и другие числовые характеристики, которые пока рассматривать не будем.





Дата публикования: 2015-10-09; Прочитано: 1183 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...