Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
The 29N6 Delta was designed for fixed operation in remote locations and is commonly deployed on a latticework mast with tethers.The antenna arrangements available include single reflectors or Janus-faced paired reflectors. A IFF arrays are often attached to the side of the primary aperture. The design uses three stacked beams. There are no reports of significant exports of this radar.
Specifications | |
Диапазон волн Wavelengths | дециметровый L-band |
Зона обзора: Search Coverage: | |
по высоте, м altitude in m | 0-10000 |
по азимуту, град. Azimuth, deg. | |
по углу места, град. in elevation, deg. | 0-12 |
Дальность обнаружения цели типа "истребитель" одним АРСП при подъеме фазового центра антенны на 12 м (с вероятностью 0,5), км: Detection range for a "fighter RCS target" for antenna phase centre elevation of 12 m (with a probability of 0.5), km: | |
на высоте, м: at an altitude of, m: | |
100 м 100 m | |
1000 м 1000 m | |
3000-10000 | |
Обобщенная зона обнаружения двух АРСП при расстоянии между ними 100 км, на высоте, км: Detection footprint of two systems with a distance of 100 km between stations, and for a given target altitude, km: | |
500 м: 500 m: | |
глубина depth | |
протяженность length | |
3000 м: 3000 m: | |
глубина depth | |
протяженность length | |
Точность измерения: Accuracy: | |
дальности, м range, m | |
азимута, мин. azimuth minutes. | |
Определяемые эшелоны высоты, км: Altitude bands, km: | 0-2; 2-4; 4-6 |
Количество трасс, выдаваемых на АСУ Number of tracked targets | |
Темп обновления информации, с Track update rate, sec | 5, 10 и 20 5, 10 and 20 |
Среднее время наработки на отказ, ч: MTBF, hr: | 1400 (АРСП) 800 (ПОДУ) 1400 (ARSP) 800 (PODU) |
Потребляемая мощность, кВт Power consumption, kW | 16 (АРСП) 16 (ПОДУ) 16 (ARSP) 16 (PODU) |
Обслуживающий персонал в одну смену, чел. Crew requirement, per | 2-3 (на ПОДУ) 2-3 (in PODU) |
Detection Range Performance by Variant: | D1E | D2E | D3E |
Range/Altitude in [km] for 1 m2 target. | 400/40 (315/120) | 370/40 (315/120) | 310/40 (285/120) |
Range/Altitude in [km] for 0.1 m2 target. | 240/40 (230/120) | 210/40 (195/120) | 175/40 (165/120) |
The VNIIRT designers paid considerable attention to operation in high threat environments. A number of design features were introduced for this reason:
Another very modern feature in this design is the use of Non-Cooperative Target Recognition (NCTR). This is claimed to be performed by the analysis of backscatter power levels, correlation against known signatures, and the flight trajectory characteristics of the track. Helicopters are recognised by analysing the advancing and receding rotor blade Doppler shifts.
To defeat anti-radiation missiles and Emitter Locating Systems, the Gamma DE employs short burst transmissions, with radar emission timing slaved to the Gazetchik E emitting anti-radiation missile decoy system. In addition chaff, smoke generators and infrared decoys are employed to seduce missiles with active radar, electro-optical or imaging infared seekers. The Gazetchik E is claimed to achieve a 0.85-0.95 Pk against anti-radiation missiles. It is worth noting than many such missiles do not have the band coverage to home in on an L-band emitter such as the Gamma DE.
Like many Western L-band radars, such as the MESA, the Gamma-DE has an integrated IFF function in the primary array, supporting Mark XA and XII modes. This is performed using the VNIIRT developed Voprosnik-E secondary radar, embedded in the Gamma-DE antenna system.
The AESA design provides cited mainlobe steering angles of up to ±60° in azimuth and elevation. VNIIRT claim a robust detection range of up to 600 nautical miles against high elevation angle ballistic missile targets. Like Western phased array radars the Gamma DE is capable of adaptively interleaving search and track beams, and nulling particular angular sectors which are subject to jamming. Modes include high update rate search waveforms in narrow solid angles, providing for high quality tracking of high speed closing targets.
A single Gamma DE system comprises a towed antenna head trailer with the 1280 element 8 x 5.2 metre AESA on a turntable, a semi-trailer radar cabin with electronics and operator stations, and a dual redundant 16 kiloWatt diesel generator. An option cited for the Gamma DE is deployment of the radar head on the 24 metre 40V6M or 40 metre 40V6MD semi-mobile mast systems. The latter are carried by semi-trailer and typically towed by a MAZ-537 or other tractor. Cited time to deploy the basic demonstrator configuration is 1.5 hrs. More recent (2007) VNIIRT data states 20 minutes to deploy the towed configuration, and 5 minutes to deploy a self-propelled configuration carried on a truck. This qualifies the towed Gamma DE as mobile, and the self-propelled configuration as "shoot and scoot".
To date no details of the self propelled variant have been disclosed. Given the size and weight of the Gamma DE antenna system, the configuration is likely to be similar to that of the 91N6E Big Bird rather than 96L6, most likely using the MZKT-7930 tow tractor, and a gas turbine generator equipped semi-trailer for the antenna head and equipment cabin.
In the towed variant, radiofrequency datalinks permit the cabin to be located up to 1 km from the AESA, and additional datalinks permit up to 15 km separation between the cabin and an IADS command post. For semi-hardened revetted deployment optical fibre cables are available.
Almaz-Antey literature on the S-400 / SA-21 system states that compatible interfaces are available between the S-400 battery and the Gamma DE system. The azimuthal tracking accuracy of 0.17-0.2°, elevation accuracy of 0.2-0.3° and range accuracy of 60-100 metres make this radar eminently capable of providing midcourse guidance updates for a range of SAM systems. For comparison, the 64N6E Big Bird series used in the SA-20/21 has around twice the angular and range tracking error magnitude compared to the Gamma DE.
Основные тактико-технические характеристики РЛС «Гамма-ДЕ»
(2007 VNIIRT Data)
Диапазон волн | дециметровый |
Зона обзора: | |
по азимуту, град | |
по дальности, км | 10-400 |
по углу места, град | -2…+60 |
по высоте, км | |
Дальность обнаружения, км: | |
цели с ЭПР = 1 м2 | |
цели с ЭПР = 0,1 м2 | |
Точность измерения координат: | |
дальности, м | 60-100 |
азимута, мин. | |
угла места, мин. | 15-18 |
Коэффициент подавления отражений | |
от местных предметов, дБ | |
Количество одновременно сопровождаемых целей, не менее | |
Среднее время наработки на отказ/среднее время восстановления, ч | 1000/0,5 |
Время развертывания при размещении АПУ, мин.: | |
на прицепе | |
на автомобильном шасси | |
Время включения РЛС, мин. | 1,2 |
Количество транспортных единиц | 2-3 |
Эксплуатационный расчет (одна смена), чел. |
VNIIRT Gamma DE AESA with radomes open for maintenance of the AESA.
Notional configuration of a production 67N6E Gamma DE in mast mounted and self propelled variants. The exact configuration of either variant has yet to be disclosed (Author).
Main tactical and technical characteristics (LEMZ Data) | |
Radiated frequencies waveband | "C" |
Automatic frequency control availability | + |
Diapason of detected targets slant ranges Radar coverage: А) In a mode of all-altitude detection: in azimuth in elevation (there is a possibility to adjust the lower limit of elevation coverage down to minus 3°) in Doppler speed data renewal rate: in lower zone from 0 to 1.5° in upper zone from 1.5 to 20° B) In the mode of sector scan: In the sector of coverage: in elevation in azimuth in doppler speed sector scan time Outside the decelaration sector: in elevation lower sector scan time Full scan cycle В) In the mode of low-altitude detection in azimuth in elevation in doppler speed scan rate | 5-300 km 360° from 0 to 20° from ±30 to ±1200 m/s 6 s 12 s from 0 to 60° up to 120° from ±50 to ±2800 m/s up to 8 s from -3 to1.5° 5,5 s 13,5 s 360° 0 - 1,5° from ±30 to ±1200 m/s 6 s |
Tracking of targets is provided at elevation angles | up to 60° |
Quantity of tracked targets | up to 100 |
Time of track initiation and outputting of target indication (TI): for aerodynamic target: at elevation angles below 1.5° at elevation angles above 1.5° | 12 s 21 s |
Quantity of false TI during 30 min of operation | at most 3-5 |
Readiness time: for manufacturing version on one transportation vehicle: from march from deployed state from on-duty state for manufacturing version on two transportation vehicle: from march from deployed state from on-duty state | 5 min at most 3 min at most 40 s 30 min at most 3 min at most 40 s |
Time of installation of antenna on a tower | 2 hr |
Continuous operation | without limit |
The radar provides serviceability under the following climatic conditions: at temperature at dust contents at wind speed stability against turnover at wind speed under solar radiation, icing at altitude above sea level | ±50 °С up to 2.5 g/m3 up to 30 m/s up to 50 m/s + up to 3000 m |
The radar crew | 3 people |
Both the manufacturer LEMZ and Almaz-Antey are offering the 96L6 with the 40V6M series masts widely used with the 76N6 Clam Shell and 36D6 Tin Shield S-band radars. To date no photographs of this configuration have emerged. A towed variant also exists (Author).
S-400 battery with 96L6 deployed (© 2010, Yevgeniy Yerokhin, Missiles.ru).
Specifications (J.C. Wise/NRIET) | |
Frequency range: | 216~220 MHz |
Rmax: | 410 km (Pd=0.5) |
Rmax: | 380 km (Pd=0.8) |
Coverage: | |
Azimuth: | 0° < 360° |
Elevation: | 0° < 25° |
Reliability | |
MTBFC: | => 500 hours |
MTTR: | <= 0.5 hours |
Aperture: | 16.5 x 7.12 m Super cosecant square beam in elevation |
Peak Power: | ~50 kW |
Pulse Width/Duty Cycle: | 2 usec / 13% |
Sweep Rate: | ~10 sec |
Sidelobes: | < -30dB |
Processing/MTI Improvement Factor: | Digital AMTI / 41 dB |
Clutter Rejection: | ~45 dB |
Power Requirements: | 2 x 120 kW diesel generators |
Basic Characteristics /Основные характеристики | |
Диапазон волн, МГц | 390-430 (10 рабочих точек) |
Operating Band, MHz | 390-430 (10 operating frequencies) |
Зона обнаружения: | многозвенная (максимальное количество звеньев 10) |
Coverage Zone: | Variable (up to 10 bistatic links) |
длина одного звена, км distance between stations, km | До 50 up to 50 |
поперечный размер барьерной зоны, км width of mainlobe, km | 1,5-12 (в зависимости от типа цели) 1.5 - 12 (depends on type of target) |
высота барьерной зоны, км coverage altitude, km | от 0,03 до 3-7 from 0.03 metres to 3 - 7 |
Точность определения координат и параметров движения воздушных объектов (усредненная по трассе): Target tracking accuracy (average per track) | |
вдоль барьера, м along mainlobe, m | |
поперек барьера, м normal to mainlobe, m | |
азимута, град. azimuth, degrees of arc | |
скорости, м/с velocity, m/sec | 5,8 5.8 |
Разрешающая способность поперек барьера, м Resolution within mainlobe, m | не более 300 not exceeding 300 |
Средний период ложных тревог, ч False alarm rate, he | не менее 72 at least 72 |
Количество классов распознаваемых целей Identifiable target categories | 5 (крылатая ракета, истребитель, бомбардировщик, вертолет, легкомоторный самолет) 5 (cruise missile, fighter, bomber, helicopter, ultralight) |
Вероятность распознавания Probability of detection | 0,89 0.89 |
Вид выходной информации Output format | трассы tracks |
Количество одновременно сопровождаемых целей Number of tracked targets | 5 (в зоне обзора одного звена) 5 (within each mainlobe) |
Темп выдачи информации, с Data output rate, sec | |
Source: Rusarmy.com |
Basic Characteristics /Основные характеристики | |
Диапазон волн Operating Band | декаметровый HF |
Зона наблюдения: Surveillance coverage: | |
по дальности, км range, km | 15-300 |
по азимуту, град. azimuth, degrees of arc | 110-120 |
по углу места, град. elevation, degrees of arc | 0-30 |
Обзор пространства Coverage | параллельный parallel |
Максимальная дальность обнаружения морских надводных объектов, км: Maximum detection range against marine surface targets, km: | |
судов водоизмещением, т: displacement of vessels, t: | |
до 1000 to 1000 | |
от 2000 до 5000 from 2000 to 5000 | |
более 7000 More than 7000 | |
Максимальная дальность обнаружения воздушных объектов (самолет, вертолет) км: Maximum detection range against airborne targets (aircraft, helicopter), km: | |
при высоте полета, м: at a flight altitude, m: | |
более 7000 More than 7000 | |
от 200 до 5000 from 200 to 5000 | |
от 3 до 200 from 3 to 200 | |
Количество одновременно сопровождаемых объектов: The number of concurrently tracked targets: | |
надводных surface | |
воздушных air | |
Потребляемая мощность от сети первичного электропитания, кВт Power consumption, kW | |
Среднее время наработки на отказ, ч MTBF, hr | |
Среднее время восстановления, мин. MTTR, min. | |
Срок службы, лет Equipment design life, years | |
Эксплуатационный расчет (одна смена), чел. Crew complement (one), personnel | |
Время развертывания на подготовленных площадках, сутки Time to deployment at a prepared site, days |
PLA OTH-B Over-The-Horizon Backscatter Radar [Click for more...]
PLA CEIEC Surface Wave-OTH (SW-OTH) Radar [Click for more...]
NNIIRT Nebo M System Components | |
KU | Central track processing and fusion system with multiple operator consoles. |
RLM-M | Self-propelled AESA radar based on VHF band Nebo SVU design |
RLM-D | Self-propelled AESA radar based on L band Protivnik G design |
RLM-S | Self-propelled AESA radar based on S/X band Gamma S1 design |
The Nebo-M system is clearly designed to hunt the F-35 Joint Strike Fighter. The VHF-Band component of the system provides sector search and track functions, with the X-Band and L-Band components providing a fine track capability. By good placement of the radars relative to the threat axis, the L-Band and X-Band components illuminate the incoming target from angles where the target RCS is suboptimal. Attempts to jam the Nebo-M will be problematic, since all of these radars have a passive angle track capability against jammers, as a result of which usage of a jammer permits passive triangulation of the target using three angle track outputs. The RLM-S and RLM-D have better elevation tracking accuracy than the RLM-M, and therefore the Nebo M should be capable of producing high quality tracks suitable for midcourse guidance of modern SAMs and full trajectory guidance of legacy SAMs.
RLM-M component of the Nebo M, based on the VHF band Nebo SVU. This is effectively a self-propelled derivative of the Nebo SVU demonstrator design. Below, performance comparison between Nebo SVU and Nebo M.
RLM-D component of the Nebo M based on the L band Protivnik G/GE series. This is effectively a self-propelled derivative of the towed 59N6E series, but using AESA technology and a smaller aperture area.
Baseline Gamma S1/S1E on the BAZ-64022 chassis, the RLM-S will be a similar configuration (Said Aminov Vestnik-PVO).
BAZ-6909-015 8 x 8 all terrain vehicle. This design is also the basis of the tow tractor used for the new 5P85TE2 TEL for the S-400 / SA-21 SAM system.
Дата публикования: 2015-09-17; Прочитано: 4125 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!