Равновесие жидкостей и особенно газов, рассмотренное в предыдущей лекции, соответствует идеальным внешним условиям и поэтому на практике реализуется крайне редко. Обычно жидкости при внешнем воздействии приходят в движение, при этом давление и скорость ее частиц, вообще говоря, могут сложным образом меняться от точки к точке внутри объема текущей жидкости.
Поясним сказанное примером. Подключим горизонтальную стеклянную трубку переменного сечения при помощи резинового шланга к водопроводному крану (рис. 3.1). Если напор воды остается постоянным, то течение воды можно считать установившимся (или стационарным). В этом случае масса воды M, протекающая в единицу времени через сечения с площадями S1 и S2 будет одинаковой, поэтому имеет место равенство
| (3.1)
|
где (
и v - плотность и скорость жидкости в этих сечениях. Если жидкость несжимаема
, то условие (3.1) переходит в условие постоянства объема жидкости (условие несжимаемости), протекающего через сечения S1 и S2:
|
Рис. 3.1.
|
Следует отметить, что условия постоянства массы (3.1) и несжимаемости жидкости (3.2) записаны для случая, когда скорости всех частиц жидкости одинаковы в поперечном сечении трубки.
Для графического изображения течения жидкости удобно использовать линии тока - линии, касательная к которым в каждой точке совпадает с вектором скорости частицы (рис. 3.2). Легко видеть, что в сечении S скорости частиц различны, и объем протекающей жидкости через это сечение не может быть записан в виде (3.2).
|
Рис. 3.2.
|
Далее отметим, что по мере приближения к узкому сечению S2 частица, деформируясь, ускоряется (в силу 3.2), а при удалении от S2 - замедляется. Эти ускорения могут обеспечить лишь силы давления fi = - pi n, показанные на рис. 3.2 маленькими стрелками. Из рисунка ясно, что давление в жидкости по мере приближения к S2 падает. А затем возрастает. Это легко проверить, если сравнить уровни h1 и h2 жидкости в манометрических стеклянных трубках, впаянных в горизонтальную трубку вблизи сечений S1 и S2. Поскольку
, то p1 > p2, т.к. h1>;h2. На рис. 3.3 качественно изображено распределение скоростей и давлений вдоль оси трубки (см. рис. 3.2).
|
Рис. 3.3.
|
Для количественного описания течения жидкости разобьем поток жидкости по трубе на элементарные потоки по воображаемым трубкам тока, образуемых семейством линий тока. В поперечном сечении трубки тока скорость частиц приблизительно одинакова, и это обстоятельство существенно облегчаем анализ течения жидкости.
Найдем количественную связь между скоростью и давлением, качественно отображенную на рис. 3.3. При прямолинейном течении частиц воды вдоль осевой трубки тока сумма сил, приложенных к единице объема (см. 2.5), обеспечивают его ускорение. В соответствии со 2-м законом Ньютона можно записать
| (3.3)
|
где Fx - плотность, имеющая размерность Н/м3. Отметим, что в уравнение (3.3) не входят силы вязкости, зависящие от скорости движения элемента жидкости. Впоследствии мы учтем их влияние и выясним условия, при которых ими можно пренебречь. Изменение скорости частицы dvx и связанное с ним ускорение может происходить как вследствие стационарного движения частицы от широкого к узкому (или наоборот) сечению, так и при нестационарном изменении скорости течения во времени (например, при медленном увеличении или ослаблении напора воды с помощью крана). Поэтому в общем случае скорость частиц является функцией не только координаты x, но и времени t:
| (3.4)
|
где dx=vxdt - расстояние, пройденное частицей за время dt. Подставляя (3.4) в (3.3), приходим к уравнению Эйлера
| (3.5)
|
описывающее одномерное течение несжимаемой невязкой жидкости. При стационарном течении жидкости по горизонтальной трубе скорость не зависит от времени
, внешние силы Fx=0, и уравнение Эйлера принимает простой вид
| (3.6)
|
Здесь вместо
используется символ полной производной d/dx.
Учитывая, что
перепишем (3.6) в виде
| (3.7)
|
Равенство (3.7), устанавливающее связь между давлением и скоростью, является частным случаем уравнения Бернулли. Константа, входящая в это уравнение, определяется из значений давления и скорости в каком-либо сечении трубки тока.
Используя это уравнение, определим массу воды (расход), проходящую за единицу времени через сечение трубки, изображенной на рис. 3.2. В соответствии с уравнением (3.7) давления и скорости в сечениях S1 и S2 связаны соотношением
| (3.8)
|
Помимо этого, искомый расход воды определяется равенством (3.1):
| (3.9)
|
Поскольку давление
и определяются по показаниям h1 и h2 манометрических трубок, то решая систему уравнений (3.8) и (3.9) относительно m, находим
| (3.10)
|
Для измерения расхода воды на практике применяются водомеры, основу которых составляет труба переменного сечения, оснащенная манометрами для измерения давлений p1 и p2 в известных сечениях S1 и S2.