Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Общие положения. Очертания многих предметов представляют собой сочетание ряда линий, в большинстве своем плавно переходящих одна в другую



Очертания многих предметов представляют собой сочетание ряда линий, в большинстве своем плавно переходящих одна в другую. Примером плавных переходов могут служить контуры различных видов художественных изделий, посуды, рисунки орнаментов и т.п.

Плавный переход одной линии в другую называют касанием линий, а точку, в которой происходит касание, - точкой касания или перехода (рисунок 41). Например, две дуги радиусами R1 и R2, касающимися между собой (рисунок 41 а), имеют общую точку касания A, лежащую на линии, соединяющей центры этих дуг – точки O1 и O2. На рисунке 41, б изображена прямая, касающаяся дуги радиуса R и имеющая с ней общую точку касания B, расположенную на перпендикуляре, опущенном из центра дуги – точки О на прямую. Через любую точку касания можно провести общую касательную, которая будет перпендикулярна к радиусам дуг, проведенным в точку касания.

а б

Рисунок 41

Плавный переход одной линии в другую при помощи промежуточной линии называют сопряжением. На рисунке 42 такой промежуточной линией является дуга AB радиусом Rc, с помощью которой осуществлен плавный переход (сопряжение) от прямой к дуге окружности радиусом R.

Рисунок 42

Чаще всего промежуточной линией является дуга окружности, называемая дугой сопряжения, или сопрягающей дугой. Радиус сопрягающей дуги носит название радиуса сопряжения, а центр дуги – центра сопряжения. Дуга сопряжения касается одновременно двух сопрягаемых линий. При сопряжении всегда имеются две точки перехода (на рисунке 42 точки А и B), и через каждую из них можно провести по одной общей касательной.

Таким образом, построение сопряжений основано на свойствах касательной к дуге окружности и касания двух дуг окружностей.





Дата публикования: 2015-07-22; Прочитано: 2578 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...