Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
При расчете защиты АЭС приходится рассматривать вопросы так или иначе связанные с определением полей и.и. или энергии, поглощенной в материалах конструкции, теплоносителе, защите. Глубина проработки и перечень необходимых данных для выполнения расчета зависят от стадии проектирования АЭС. При расчете защиты на стадии технического проектирования необходимо знать:
— тепловую мощность реактора, кампанию, количество технологических каналов и их размещение в активной зоне;
— размеры активной зоны;
— принципиальную технологическую систему АЭС с перечнем оборудования;
— параметры теплоносителя по участкам технологической схемы: давление, температуру, плотность, паросодержание, скорость и время циркуляции;
— материалы контура, объем теплоносителя, состав примесей;
— состав газов, используемых для технологических нужд;
— возможные аварийные ситуации, связанные с утечкой из контуров теплоносителя, газа, их параметры;
— способ и частоту перезагрузки технологических каналов, количество одновременно перегружаемых каналов, время их хранения на АЭС.
Этот не полный перечень необходимых данных свидетельствует о том большом объеме расчетных и конструкторских работ, который выполняется при проектировании защиты АЭС. Обычно вопросы проектирования решаются в следующей последовательности.
1. Расчет полей нейтронов и гамма-квантов с поверхности активной зоны, расчет плотности потоков нейтронов и гамма-квантов на корпус реактора.
2. Расчет тепловой защиты реактора, энерговыделения в отражателе, тепловых экранах, корпусе реактора.
3. Выбор материалов и расчет защиты от излучения из реактора и ближайших слоев защиты в различных направлениях.
4. Расчет активности теплоносителя и примесей при нормальной работе реактора, а также при нарушении герметичности оболочек тепловыделяющих элементов (твэлов).
5. Определение радиационной обстановки в технологических помещениях АЭС, выбор материалов защиты, толщины стен помещений с оборудованием контуров.
6. Расчет прохождения излучения через неоднородности в защите и разработка специальных мер, снижающих их влияние на радиационную обстановку.
7. Расчет удельной активности газов и выбросов в вентиляционную систему при нормальной и аварийной работе АЭС.
Следует отметить, что в настоящее время для расчета защиты АЭС разработаны соответствующие методики и алгоритмы, реализованные в программах на электронно-вычислительных машинах (ЭВМ). Как правило, решается уравнение переноса излучения (кинетическое уравнение Больцмана) численными детерминистическими (многогрупповыми) или вероятностными (метод Монте-Карло) методами.
Отличительным признаком этих методов является отыскание дифференциальной плотности частиц Ф( r ,E, Ω ) в защите, как функции шести переменных, и конструирование с помощью этой функции искомых функционалов (характеристик дозного поля). Решение уравнения переноса требует значительных затрат машинного времени и ЭВМ с большой памятью. Кроме того, алгоритм решения этих задач разработан лишь для геометрически правильных источников и.и. и защит, а также для фиксированного набора характеристик источника. Реальные защиты обычно без существенных отступлений не удается подвести под ограничение той или иной программы и при переходе от решения идеализированной задачи к реальной возникают погрешности, иногда сводящие на нет все преимущества точного метода.
Поэтому методы точного решения кинетического уравнения переноса при разработке защиты АЭС в настоящее время находят двоякое применение: как контрольные тесты при разработке упрощенных методов решения уравнения переноса (теоретический эксперимент) и при решении некоторых частных задач проектирования, требующих большой точности и максимального подпадающих под ограничения программ.
Другой подход к расчету защит от и.и. — использование инженерных и эмпирических методов. Отличительной их особенностью можно считать то, что с их помощью рассчитывают лишь дифференциальный энергетический спектр плотности потока частиц Ф0( r ,E),
|
Эти методы расчета не позволяют получить дифференциальное угловое распределение или оценивают его очень приближенно. Потребность машинного времени у этих методов значительно меньше и они вполне пригодны для вариантных расчетов при проектировании защиты АЭС.
Эмпирические методы расчета выполняются, как правило, вручную. К ним относятся такие методы, как метод сечения выведения, учет рассеянного излучения с помощью факторов накопления, метод конкурирующих линий и др. Несмотря на кажущуюся простоту эмпирических методов, их использование требует понимания сущности протекающих процессов и четкого знания пределов применимости каждого метода.
Зависимость основных функционалов от толщины защиты имеет экспоненциальный характер, поэтому при правильном использовании эмпирических методов возможны расхождения с точным решением в десятки и сотни раз.
Кинетическое уравнение переноса инвариантно по отношению к нейтронному и гамма-излучению и может быть сформулировано для «частиц», испытывающих те или иные взаимодействия. Однако большинство существующих методов решения кинетического уравнения развиты применительно к одному из этих видов излучения. Это вызвано различием в законах рассеянных нейтронов и гамма-квантов, а также резонансным характером зависимости сечений нейтронов от энергии. По этой причине дальнейшее изложение методов расчета проводится раздельно для нейтронов и гамма-квантов.
Необходимо отметить, что именно учет рассеянного в веществе излучения представляет наибольшие трудности в задачах переноса излучений через среды.
По ядерному составу и, следовательно, по общности процессов взаимодействия излучений с материалом, а также по его основному назначению, материалы защиты подразделяют на три группы: легкие; состоящие в основном из элементов со средним значением атомного номера и тяжелые. В первых двух группах выделяют две подгруппы материалов: содержащие и не содержащие водород. Основное назначение материалов первой группы — ослабление плотности потока нейтронов, главным образом, промежуточных энергий. Нейтроны замедляются в таких материалах в результате упругих рассеяний на ядрах водорода (первая подгруппа) и на ядрах других легких элементов (вторая подгруппа).
Материалы второй группы предназначены для защиты как от γ-излучения, так и нейтронов. Основным показателем защитных свойств материала по отношению к γ-излучению служит линейный коэффициент ослабления плотности (мощности дозы) γ-излучения. Чем выше плотность материала тем больше μ (коэффициент ослабления), тем более высокими защитными свойствами обладает материал. Нейтроны замедляются как в результате упругих (особенно, если материал содержит водород), так и неупругих рассеяний. Защитные свойства этих материалов улучшаются в результате введения в них тяжелого компонента (железа, бария и др.).
Материалы третьей группы предназначены для защиты от γ-излучения и быстрых нейтронов, γ-излучение ослабляется за счет увеличения плотности материала, а нейтроны замедляются в результате неупругих рассеяний.
Безопасность атомной станции должна обеспечиваться за счет последовательной реализации принципа глубоко эшелонированной защиты, основанного на применении системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду и системы технических и организационных мер по защите барьеров и сохранению их эффективности и непосредственно по защите населения.
Система барьеров включает: топливную матрицу, оболочки ТВЭЛов, границу контура теплоносителя, охлаждающего активную зону, герметичное ограждение локализующих систем безопасности. Состояние каждого из этих барьеров контролируется в процессе эксплуатации АЭС и поддерживается на уровне, соответствующем требованиям действующих нормативных документов по безопасности АЭС.
Снижение мощности эквивалентной дозы от внешнего ионизирующего излучения до уровня, не превышающего допустимый во всех режимах работы АЭС, осуществляется экраном биологической защиты.
Защитный материал выбирают с учетом защитных и механических свойств, а также его стоимости, массы и объема. Помимо защитных свойств, материал должен быть конструкционно-прочным; иметь высокую радиационную и термическую стойкость, огнестойкость, жаростойкость, химическую инертность; не выделять под действием нагрева и облучения ядовитых и взрывоопасных с резким запахом газов; сохранять стабильные размеры. Необходимо также учитывать простоту монтажа, возможность механической обработки, стоимость и доступность материалов.
Защитные свойства материалов от нейтронного излучения определяются их замедляющей и поглощающей способностью, степенью активации. Быстрые нейтроны наиболее эффективно замедляются веществами с малым атомным номером, такими как графит и водородсодержащие вещества (легкая и тяжелая вода, пластмассы, полиэтилен, парафин). Для эффективного поглощения тепловых нейтронов применяются материалы, имеющие большое сечение поглощения: соединения с бором — борная сталь, бораль, борный графит, карбид бора, а также кадмий и бетон (на лимонитовых и других рудах, содержащих связанную воду).
Гамма-излучение наиболее эффективно ослабляется материалами с большим атомным номером и высокой плотностью (свинец, сталь, бетон, магнетитовые и другие руды, свинцовое стекло).
На АЭС в качестве материала для биологической защиты обычно используется бетон, металлические конструкции и вода.
Рассмотрим некоторые материалы, получившие широкое применение в качестве защиты от нейтронного и гамма-излучения.
Вода используется не только как замедлитель нейтронов, но и как защитный материал от нейтронного излучения вследствие высокой плотности атомов водорода. После столкновений с атомами водорода быстрый нейтрон замедляется до тепловой энергии, а затем поглощается средой. При поглощении тепловых нейтронов ядрами водорода по реакции H(n,γ)D, возникает захватное γ-излучение с энергией E =2,23 МэВ. Захватное γ-излучение можно значительно снизить, если применить борированную воду. В этом случае тепловые нейтроны поглощаются бором по реакции B(n,α)Li, а захватное излучение имеет энергию E = 0,5 МэВ. Конструктивно водяную защиту выполняют в виде заполненных водой секционных баков из стали или других материалов.
Полиэтилен (р = 0,93 г/см3, nн= 7,92 ·1022 ядер/см3) — термопластичный полимер (CnH2n), является лучшим замедлителем, чем вода. Полиэтилен можно применять на таких участках защиты, где его температура будет меньше температуры размягчения, равной 368К. Полиэтилен применяют в виде листов, лент, прутков и т.п. При использовании полиэтилена необходимо учитывать его высокий коэффициент линейного расширения (в 13 раз больше, чем у железа). С повышением температуры полиэтилен размягчается, а затем загорается, образуя двуокись углерода и воду. Защитные свойства от γ-излучения примерно такие же, как у воды. Для уменьшения захватного γ-излучения в полиэтилен добавляют борсодержащие вещества
Из других водородсодержащих веществ используют различные пластмассы (полистирол, полипропилен) и гидриды металлов.
Графит находит широкое применение в реакторах на тепловых нейтронах в качестве замедлителя и отражателя. Он обладает достаточной прочностью, легко поддается механической обработке, используется в защите в виде блоков. Однако стойкость графита к окислению низка, в результате чего он становится хрупким. Кроме того, при облучении нейтронами кристаллическая решетка графита повреждается, что отражается на его физических свойствах. Для повышения стойкости графита к окислению до температуры 800 — 1250 K производится покрытие его поверхности пленкой из фосфатного стекла. При температуре свыше 400 K графит используют в инертной среде.
Карбид бора хрупок, обладает высокой термостойкостью. Рабочая температура на воздухе до 800 K, в инертной среде до 1800 K. При поглощении тепловых нейтронов в результате ядерной реакции B(n,α)Li образуются гелий и литий. Скопление гелия в порах при высокой температуре может привести к увеличению давления в газовой полости, вследствие чего возникают трещины в материале. Присутствие лития в борсодержащем материале снижает его коррозионные свойства.
Содержание бора в легированной стали не должно превышать 3%, при более высоком его содержании сталь становится хрупкой и плохо обрабатывается. С использованием бора изготовляют дисперсионные материалы, например бораль, борный графит и др.
Бораль изготовляют из листов алюминия, между которыми засыпают порошкообразную смесь карбида бора с алюминием. Затем всю массу прокатывают в горячем состоянии. Лист бораля толщиной 0,44 см с массовым содержанием B4C до 30% снижает плотность потока тепловых нейтронов в 1000 раз. Бораль обладает удовлетворительной теплопроводностью, его плотность сохраняется до температуры 1100 K. Бораль хорошо обрабатывается, легко сваривается в атмосфере гелия.
Борный графит гораздо дешевле бораля. Как и бораль, он обладает хорошими поглощающими свойствами и малой остаточной активностью. Лист из борного графита толщиной 2,5 см (с массовым содержанием бора до 4%) ослабляет плотность потока тепловых нейтронов в 400 раз.
Железо используется для защиты в виде изделий из стали и чугуна (прокат, поковка, дробь). Сталь (углеродистая и с легирующими элементами) является основным конструкционным материалом для изготовления узлов реакторных установок (корпус реактора, тепловая и радиационная защита, трубопроводы, различные механизмы, арматура для защиты из других материалов и т.п.). Она относится к материалам, в которых хорошо сочетаются конструкционные и защитные свойства. Масса зашиты из стали от γ-излучения на 30% больше массы эквивалентной свинцовой защиты, однако повышенный расход материала компенсируется лучшими конструкционными характеристиками стали. В качестве защиты от нейтронного излучения сталь более эффективна, чем свинец. Однако при использовании стали в качестве конструкционного материала для реактора необходимо учитывать и ее недостатки. Под действием тепловых нейтронов железо, являющееся основной составной частью стали, активируется с образованием радионуклида 55Fe (Т1/2=45,1 сут), излучающего фотоны (Eγ1= 1,1 МэВ; Eγ2=1,29 МэВ). Кроме того, при захвате нейтронов атомами железа возникает захватное γ-излучение (Eγ =7,7 МэВ). Иногда при несовершенной конструкции реакторной установки захватное γ-излучение, возникающее в железных конструкциях тепловой защиты, является определяющим при выборе зашиты от излучения. К недостаткам железа как защитного материала относится плохое ослабление нейтронов промежуточных энергий. При защите следует обращать внимание на со держание в стали марганца, тантала и кобальта, так как наведенная γ-активность определяется в основном содержанием этих элементов стали. Сталь, подвергающаяся облучению нейтронами высокой плотности, должна содержать не более 0,2% марганца, а тантал и кобальт могут находиться лишь в виде следов.
Захватное γ-излучение и остаточную активность можно в значительной степени уменьшить, если добавить в сталь борное соединение и получить борную сталь. Бор интенсивно поглощает тепловые нейтроны, при этом образуются легко поглощаемое γ-излучение (E =0,5 МэВ) и α-частицы. Борная сталь по механическим свойствам хуже конструкционной стали. Она очень хрупка и трудно поддается механической обработке.
Свинец используется для защиты в виде отливок (очехлованных стальными листами), листов, дроби. Из имеющихся дешевых материалов свинец обладает наиболее высокими защитными свойствами от γ-излучения. Его целесообразно использовать при необходимости ограничения размеров и массы защиты. Применение свинца ограничивается низкой температурой плавления (600 К). Защитные материалы вольфрам, тантал могут использоваться в горячих зонах, в которых применение свища исключается. Использовать эти металлы для защиты промышленных реакторов нецелесообразно, так как они крайне дороги.
Кадмий хорошо поглощает нейтроны с энергией меньше 0,5 эВ. Листовой кадмий толщиной 0,1 см снижает плотность потока тепловых нейтронов в 109 раз. При этом возникает захватное γ-излучение с энергией до 7,5 МэВ. Кадмий не обладает достаточно хорошими механическими свойствами. Поэтому чаще применяют сплав кадмия со свинцом, который наряду с хорошими защитными свойствами от нейтронного и γ-излучений имеет лучшие механические свойства по сравнению со свойствами чистого кадмия.
Бетон является основным материалом для защиты от излучений, если масса и размер защиты не ограничиваются другими условиями. Бетон, применяющийся для защиты от излучений, состоит из заполнителей, связанных между собой цементом. В состав цемента в основном входят окислы кальция, кремния, алюминия, железа и легкие ядра, которые интенсивно поглощают γ-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений. Ослабление плотности потока нейтронов в бетоне зависит от содержания воды в материале защиты, которое определяется в основном типом используемого бетона. Поглощение нейтронов бетонной защитой может быть значительно увеличено введением соединения бора в состав материала защиты. Поглощающая способность γ-излучения зависит от плотности бетона, которая может составлять 2,1 — 6,6 т/м3. Наибольшая плотность бетона получается при использовании в качестве заполнителя железного скрапа (стальных шариков, проволоки, обрезков стального лома), наименьшая — при использовании песка и гравия. Конструкция бетонной защиты может быть монолитной (для больших реакторов) или состоять из отдельных блоков (небольших реакторов). Для снижения выхода захватного γ-излучения в бетон вводят вместо заполнителя до 3% B4C.
В зависимости от применяемых заполнителей и условий эксплуатации бетона выделяют его следующие типы:
Строительный бетон (р=2,2 —2,3 т/м3) используют для изготовления защиты, которую эксплуатируют при низкой температуре или при наличии системы охлаждения. Заполнителем является гранит, известняк и др. Для затвердения бетона применяют воду.
Лимонитовые бетоны (р=2,4 — 3,2 т/м3) изготовляют на лимонитовых (2FeO3·SH2O — 65%, H2O — 12%) заполнителях. При T=500 K теряют 25% связанной воды.
Серпентинитовый бетон (р=2,5 — 2,7 т/м3) изготовляют из серпентинитовых (3MgO·SiO2·2H2O с примесями Al2O3, FeO, Fe2O3) заполнителей. При Т=780 К теряет связанную воду. Рабочая температура бетона 750 K. Для улучшения защитных свойств бетона добавляют в виде заполнителя железную дробь или металлический песок.
Бруситовый бетон (р=2,1 — 2,2 т/м3) изготовляют из Mg(OH)2 с примесями CaO и SiO2, содержащих до 30% воды, которая теряется при Т=650 К. Рабочая температура бетона Т = 600 К.
Магнетитовые бетоны (р = 3 т/м3) изготовляют из магнетитовых (Fe3O4) заполнителей. Если вода содержится только в виде воды затвердевания, бетон не отличается от обычного строительного бетона. Бетон используется при T=300 K.
Хромитовые бетоны (р=3,2 — 3,3 т/м3) состоят из хромитовых заполнителей FeCrO4 и используются как жароупорный бетон с рабочей температурой T=1100 K.
Баритовые бетоны (р = 3,0 — 3,6 т/м3) приготавливают из 80 — 85% BaSO4 и используют как строительный материал. Вода содержится в виде воды затвердевания.
Дата публикования: 2015-06-12; Прочитано: 1150 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!