Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Французский физик А.Ампер в 1820г подробно исследовал действие магнитного поля на проводники с током и пришел к выводу, что сила , действующая на прямолинейный проводник с током, помещенный в однородное магнитное поле, прямо пропорциональна силе тока в проводнике, его длине , магнитной индукции В и синусу угла a между направлением тока в проводнике и вектором :
.
Закон Ампера легко обобщить на случай неоднородного магнитного поля и проводника произвольной формы. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, т.е. численно равны и имеют одинаковые направления.
Бесконечно малый элемент проводника любой формы можно считать прямолинейным, а магнитное поле в области, занятой элементом можно считать однородным.
Поэтому в общем случае закон Ампера имеет вид:
, (16.1)
где - сила, действующая на элемент проводника длиной , а угол a заменен углом между векторами (проведенным в направлении тока ) и . Коэффициент пропорциональности зависит от выбора единиц измерения , В, и . При измерении всех этих величин в единицах одной и той же системы единиц (исключением является только система единиц Гаусса). Поэтому в дальнейшем коэффициент в законе Ампера мы будем опускать.
Закон Апмпера позволяет определить численное значение магнитной индукции В. Предположим, что элемент проводника с током перпендикулярен к направлению магнитного поля , тогда закон Ампера можно записать в виде:
.
Из этой формулы следует, что магнитная индукция численно равна силе, действующей со стороны поля на единицу длины проводника, по которому течет электрический ток единичной силы и который расположен ^ к направлению магнитного поля. Таким образом магнитная индукция является силовой характеристикой магнитного поля подобно тому, как напряженность является силовой характеристикой электростатического поля.
Закон Ампера, записанный в форме (16.1), не указывает направление силы . Как показали опыты, направление силы можно найти по правилу левой руки. Однако лучше пользоваться более универсальным правилом: вектор направлен перпендикулярно к плоскости, образованной векторами и таким образом, чтобы из конца вектора вращение от вектора к вектору по кратчайшему пути происходило против часовой стрелки. Иными словами вектор совпадает по направлению с векторным произведением . Из математики известно, что модуль векторного произведения равен произведению модулей векторов на синус угла между ними:
.
Поэтому можно записать закон Ампера в векторной форме следующим образом:
.
16.2. Магнитное поле. Закон Био – Савара - Лапласа
Магнитное поле описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции , связан с вектором напряженности следующим соотношением:
, (где ед. измерения [ В ]=Тл, [ Н ] = )
где m 0 — магнитная постоянная, m — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды.
Закон Био - Савара - Лапласа для проводника с током I, элемент которого dl создает в некоторой точке А индукцию поля , записывается в виде
, (16.2)
где — вектор, по модулю равный длине dl элемента проводника и совпадающий пo направлению с током, — радиус-вектор, проведенный из элемента dl проводника в точку А поля, r — модуль радиуса вектора .
Направление перпендикулярно и , т.е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление , если поступательное движение винта
Рис. 16.1. соответствует направлению тока в элементе.
Модуль вектора определяется выражением
, (16.3)
где a — угол между векторами и .
Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:
. (16.4)
Расчет характеристик магнитного поля ( и ) по приведенным формулам в общем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био-Савара-Лапласа совместно с принципом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рассмотрим два примера.
Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины. В произвольной точке А, удаленной от оси проводника на расстояние R, векторы от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («от нас»).
Поэтому сложение векторов можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами и ), выразив через него все остальные величины. Из этого следует, что
(радиус дуги СD вследствие малости dl равен r, и угол FDC по этой же причине можно считать
Рис. 16.2. прямым). Подставив эти выражения в (16.3), получим, что магнитная индукция, создаваемая одним элементом проводника равна
, (15.5)
Так как угол a для всех элементов прямого тока изменяется в пределах от 0 до p, то, согласно (16.4) и (16.5)
,
следовательно, магнитная индукция поля прямого тока
. (16.6)
Магнитное поле в центре кругового проводника с током. Все элементы кругового проводника с током создают в центре магнитное поле одинакового направления - вдоль нормали от витка.
Поэтому сложение векторов можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin a = 1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (16.3),
Рис. 16.3. .
Тогда .
Следовательно, магнитная индукция поля в центре кругового проводника с током
.
Дата публикования: 2014-10-04; Прочитано: 1822 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!