Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема Жегалкина



Каждая функция из может быть представлена в виде полинома Жегалкина единственным образом.

Здесь единственность понимается с точностью до порядка слагаемых в сумме и порядка сомножителей в конъюнкциях:

, s = 0, 1,..., n.

Доказательство. Любая функция из Р 2 может быть представлена формулой над { x 1 & x 2, x 1Å x 2, 0, 1}, а эта формула после раскрытия всех скобок и приведения подобных членов дает полином Жегалкина. Докажем единственность представления. Рассмотрим функции f (x 1,..., xn) от n переменных. Мы знаем, что всего таких функций, т.е. их таблиц истинности, 2 n. Подсчитаем число различных полиномов Жегалкина от n переменных, т.е. число вариаций вида: . Число наборов равно числу всех подмножеств множества { x 1,..., xn }, сюда входит и пустое множество (если s = 0). Число подмножеств множества из n элементов равно 2 n, а так как каждый набор входит с коэффициентом , принимающим два значения: 0 или 1, то число всевозможных полиномов будет . Так как каждому полиному соответствует единственная функция, число функций от n переменных равно числу полиномов, то каждой функции будет соответствовать единственный полином.

Определение. Функция f (x 1,..., xn), полином Жегалкина для которой имеет следующий линейный относительно переменных вид: f = а 0 Å а 1 х 1 Å а 2 х 2 Å... Å аnхn, называется линейной.

Лемма о нелинейной функции. Суперпозицией нелинейной функции, отрицания и константы 1 можно получить конъюнкцию.

Доказательство. Пусть f (x 1,..., xn) – нелинейная функция. Тогда полином Жегалкина содержит для нее слагаемое, в котором присутствует произведение xixj. Будем считать для простоты, что x 1 x 2 в многочлене Жегалкина является этим произведением. Произведя группировку слагаемых, функцию f представим в виде

Функция h 0 не есть тождественный нуль, иначе в полиноме Жегалкина отсутствует слагаемое с произведением x 1 x 2. Тогда существует набор (a 3, …, an) из 0 и 1, для которого h 0(a 3, …, an) = 1. Пусть h 1 (a 3, …, an) = a, h 2(a 3, …, an) = b, h 3(a 3, …, an) = c. Тогда

Построим функцию:

где d = ab Å c. Если d = 0, то h (x 1, x 2) = x 1 x 2. Если d = 1, то h (x 1, x 2) = x 1 x 2 Å 1 и тогда Лемма доказана.

Функция f (x 1,..., x n) сохраняет константу a Î {0, 1}, если f (a, …, a) = a.

Пример 4. Функция xy сохраняет 0, сохраняет 1. Функция x ® y сохраняет 1 и не сохраняет 0.

2.4.6. Замыкание и замкнутые классы

Определение 1. Пусть M Í Р 2. Замыканием М называется множество всех функций из P 2, которые можно выразить формулами над М. Замыкание М обозначается [ M ].

Определение 2. Множество функций М называется замкнутым классом, если [ M ]= M.

Пример 1.

1) P 2 – замкнутый класс.

2) Множество {1, x 1Å x 2} не является замкнутым классом. Его замыканием будет класс линейных функций: [{1, x 1 Å x 2}] = { f (x 1,..., xn) = c 0 Å c 1 x 1 Å... Å cnxn }. Действительно, по определению формулы над М, функция f (G 1, x 3), где f – есть сумма по модулю 2, G 1 – функция х 1 Å х 2, будет формулой над М: f (G 1, x 3) = (x 1 Å x 2) Å x 3.

З амечание. В терминах замыкания и замкнутого класса можно дать другое определение полноты, эквивалентное исходному:

М – полная система, если [ M ] = P 2.

3) A = { f (x 1,..., xn)| f (1, 1,..., 1) = 0} – незамкнутый класс. Возьмем формулу над этим множеством. Пусть f, g 1,..., gn Î A, т.е. f (1, 1,..., 1) = 0, g 1(1, 1,..., 1) = 0, тогда f (g 1,..., gn) Î [ A ]. Посмотрим, принадлежит ли функция f (g 1,..., gn) множеству А. f (g 1(1,..., 1), g 2(1,..., 1),..., gn (1,..., 1) = f (0,..., 0)), но f (0,..., 0) не обязано быть равным 0. Действительно, пусть g 1(x 1, x 2) = x 1 Å x 2, g 2(x) = x Î A. Возьмем g 2(g 1(x 1, x 2)) = x 1 Å x 2 Î [ A ], g 2(g 1(1, 1)) = 1 Å 1 = 0, следовательно, g 2(g 1(x 1, x 2)) Ï A, отсюда [ A ] ¹ A и А – незамкнутый класс.

Важнейшие замкнутые классы в Р 2

1) Т0 - класс функций, сохраняющих константу 0.

Т 0 = { f (x 1,..., xn)| f (0,..., 0) = 0, n = 1, 2,...}. Покажем, что Т 0 является собственным подмножеством Р 2, т.е. Т 0 ¹ Æ и Т 0 Ì Р (не совпадает с Р 2). Для этого достаточно привести примеры функций, входящих в Т 0, и примеры функций из Р2, не входящих в Т 0: x 1& x 2, x 1Ú x 2, x Î Т 0 и x 1| x 2, x 1 x 2, Ï Т 0. Покажем далее, что [ Т 0] = Т 0. Вложение Т 0 Í [ Т 0] очевидно, так как по определению формулы любая функция из Т 0 является формулой над Т 0 и, следовательно, принадлежит [ Т 0]. Покажем, что [ Т 0Т 0. Для этого надо показать, что Ф = f (f 1,..., fm) Î [ Т 0], если все функции f, f 1, f 2, f 3,..., f m Î Т 0. Надо заметить, что в формуле в качестве функции f 1 могут быть взяты переменные, которые мы договорились считать тождественными функциями. Тождественная функция принадлежит классу Т 0, поэтому достаточно показать, что Ф = f (f 1,..., fm) Î Т 0. Для этого рассмотрим следующую функцию: Ф (0,..., 0) = f (f 1(0,..., 0), f 2(0,..., 0),...) = f (0,..., 0) = 0.

Число функций, зависящих от n переменных и принадлежащих Т 0, будет равно

2) T 1 класс функций, сохраняющих константу 1.

T 1 = { f (x 1,...) | f (1, 1,...) = 1}; x 1& x 2, x 1Ú x 2, x Î T 1, х 1Å х 2, x 1 x 2Ï T 1, следовательно Т 1 – собственное подмножество Р 2.

Покажем, что [ T 1] Í T 1, обратное включение следует из определения формулы и замыкания. Так как тождественная функция входит в Т 1, можно рассмотреть Ф = f (f 1,..., fn) Î [ T 1], где f, f 1,..., fn Î T 1. Найдем Ф (1,..., 1) = f (f 1(1,..., 1),..., fn (1,..., 1)) = f (1,..., 1) = 1, следовательно, Ф = f (f 1,..., fn) Î T 1, отсюда следует [ T 1] = T 1.

3) S класс самодвойственных функций.

S = { f (x 1,...)| f * = f }; x, , x 1Å x 2Å x 3Î S, x 1& x 2, x 1Ú x 2, x 1Å x 2Ï S, следовательно, S – собственное подмножество Р 2. | S (n)| = . Покажем, что [ SS. Ф = f (f 1,..., fn) Î [ S ], если f, f 1,..., fn Î S, а также, что Ф Î S. По принципу двойственности, Ф * = f *(f 1*,..., fn *) = f (f 1,..., fn) = Ф, отсюда S – замкнутый класс.

4) L класс линейных функций.

L = { f (x 1,...)| f = c 0Å c 1 x 1Å...Å cnxn }; очевидно, L ¹ Æ, с другой стороны

L ¹ P 2, так как x 1& x 2 Ï L. Заметим, что тождественная функция принадлежит L и | L (n)| = 2 n +1. Покажем, что [ L ] Í L. Рассмотрим Ф = f (f 1,..., fm), где f, f 1,..., fn Î L. Тогда Ф = а 0 Å а 1(с 10 Å с 11 х 1 Å...Å c 1 nxn 1) Å a 2(c 20 Å c 21 x 1 Å c 22 x 2Å...Å c 2 nxn 2)Å...Å an (cm 0 Å cm 1x1 Å... Å cmnxnm) = в 0 Å в 1 х 1 Å...Å вnхn Þ Ф Î L.

5) М – класс монотонных функций.

Определение. Набор a ' = (a 1,..., an) предшествует набору b ' = (b 1,..., bn) и это обозначается a ' Ð b ', если для 1£ i £ n ai £ bi, например: a '= (0010), b ' = (0110), тогда a ' Ð b '. Не любые два набора находятся в отношении предшествования, например, наборы (0110) и (1010) в таком отношении не находятся. Отношение предшествования () является отношением порядка на множестве наборов длины n, множество таких наборов будет частично упорядоченным множеством по отношению к операции.

Определение. Функция f (x 1,..., xn) называется монотонной, если для двух наборов a ' и b ', таких что a ' Ð b ', выполняется f (a ') £ f (b '). Функции 0, 1, x, x 1& x 2, x 1Ú x 2 Î M, x 1¯ x 2, x 1Å x 2, x 1~ x 2 Ï M.

Для числа монотонных функций, зависящих от n переменных, существуют оценки сверху и снизу, но точное число сосчитать не удается. Покажем, что М замкнутый класс. Рассмотрим функцию Ф Î[ M ], Ф = f (f 1,..., fm), где f, f 1,..., fm Î M, причем можем считать, что все они зависят от n переменных. Пусть набор a ' = (a 1,..., an), b ' = (b 1,..., bn). Рассмотрим Ф (a 1,..., an) = f (f 1(a 1,..., an), …, fm (a 1,..., an)) и Ф (b 1,..., bn) = f (f 1(b 1,..., bn),..., fm (b 1,..., bn)). Здесь f 1(a) Ð f 1(b),..., fm (a) Ð fm (b), тогда набор (f 1(a),..., fm (a)) Ð (f 1(b),..., fm (b)), но тогда Ф (a ') Ð Ф (b '), так как f Î M, отсюда Ф = f (f 1,...,) – монотонная функция.

Определение. Функция f есть суперпозиция над M, если f реализуется некоторой формулой над M.

Лемма о немонотонной функции. Отрицание можно получить суперпозицией констант 0 и 1, тождественной функции и немонотонной функции.

Доказательство. Пусть f (x 1,..., xn) – немонотонная функция. Тогда существуют наборы и , для которых но Пусть i 1, …, ik есть все те номера аргументов, для которых , p =1, …, k. На всех остальных аргументных местах j имеем aj = bj. В выражении заменим нули на местах i 1, …, ik на x. В результате получим функцию g (x), для которой g (0) = f () = 1 и g (1) = f () = 0. Функция g (x) является отрицанием.

Классы T 0, T 1, L, S, M пересекаются, но не совпадают, что видно из следующей таблицы, где «+» означает, что функция принадлежит данному классу и «-» – не принадлежит.

  T 0 T 1 L S M
x + + + + +
- - + + -
  + - + - +
  - + + - +
x 1 x 2 + + - - +

A ={ x, , 0, 1, x 1 x 2) не является полной системой функций так как всегда есть функции Î Р 2 не входящие в эти классы.

Задачи

1. Доказать, что пересечение любых двух замкнутых классов замкнуто.

2. Доказать, что объединение двух замкнутых классов не всегда замкнуто.





Дата публикования: 2014-10-20; Прочитано: 843 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...