Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Закон электромагнитной индукции. Закон электромагнитной индукции был открыт Фарадеем в 1831г



Закон электромагнитной индукции был открыт Фарадеем в 1831г.

Если проводящий контур находится в переменном магнитном поле, то по нему протекает ток (рис. 2.29). Фарадей экспериментально получил:

. (2.32)

Рис. 2.29. К записи закона электромагнитной индукции в форме Фарадея

Здесь положительный заряд, прошедший сквозь поперечное сечение контура в выбранном направлении за время . Этот заряд Фарадей измерял с помощью гальванометра. – увеличение магнитного потока сквозь поверхность , натянутую на контур , за это же время . Причем направление вычисления потока , т.е. направление векторов , связано с направлением правилом правоходового винта, – сопротивление контура.

В качестве примера на рисунке изображен прямолинейный проводник с переменным током и проводящий контур . Пусть они расположены в одной плоскости. Пусть в момент времени ток в проводе , а в момент времени ток в проводе . Пусть .

Очевидно,


при этом . Поэтому . Следовательно , т.е. положительные заряды будут перемещаться против или отрицательные заряды (электроны) будут перемещаться за время по направлению .

Это соответствует принципу Ленца, который гласит, что при изменении магнитного потока сквозь в контуре возникает ток, который препятствует изменению основного потока. В данном примере плотность тока будет направлена против и он создаст магнитный поток направленный «вверх», т.е. будет препятствовать увеличению магнитного потока, направленного вниз. Следовательно, принцип Ленца вытекает из закона электромагнитной индукции (2.32).

Разделим левую и правую части (2.32) на и умножим на сопротивление контура:

.
Если стремиться к нулю, то:

;
так как это есть ток , вычисленный в направлении , а , то получим

.

По закону Ома (циркуляция вычисляется в направлении ). Поэтому

(2.33)

Максвелл предположил, что это соотношение выполняется не только для проводящего контура, но и для воображаемого контура . Соотношение (2.33), где – любой воображаемый контур, является окончательной формой закона электромагнитной индукции в интегральной форме.

Этот закон гласит о том, что переменное во времени магнитное поле – причина (стоит справа в (2.33)) порождает электрическое поле – следствие (стоит слева в (2.33)).

Резюмируя выше изложенное, можно заключить. Электрическое поле порождается зарядами, как неподвижными, так и движущимися, и переменным во времени магнитным полем. Выявляется (измеряется) электрическое поле по силовому воздействию на неподвижные заряды. Магнитное поле порождается движущимися зарядами и переменным во времени электрическим полем. Выявляется (измеряется) магнитное поле по силовому воздействию на движущиеся заряды.

Вопросы и задачи к лекции 4

53-1.Напишите выражение плотности тока смещения через другие характеристики электромагнитного поля.

54-2. Запишите закон полного тока, который будет верен и для переменных во времени электромагнитных полей.

55-3. В момент времени рубильник замыкается (рис. 2.30). Ток в цепи . Найдите величину заряда левой пластины воздушного конденсатора при и при . Найдите напряжение на конденсаторе в эти моменты времени, если диаметр пластин конденсатора , расстояние между пластинами . Предположить, что заряд равномерно распределяется по пластинам.

Рис. 2.30. К определению заряда на пластинах конденсатора по току через него

56-4. Точка лежит между обкладками плоского воздушного конденсатора, точка – вне конденсатора (рис. 2.31). Расстояние до оси симметрии системы точек и одинаково и равно . Найдите и , если , радиус пластины конденсатора равен , причем , где - расстояние между пластинами.

Рис. 2.31. К определению магнитного поля внутри и вне конденсатора, по которому протекает переменный во времени ток

57-5. Сформулируйте принцип непрерывности электрического тока в общем случае.

58-6. Сформулируйте закон электромагнитной индукции в форме Фарадея.

59-7. Сформулируйте закон электромагнитной индукции в форме Максвелла.

60-8. По ферромагнитному стержню проходит магнитный поток (рис. 2.32). Этот стержень окружен проводящим кольцом с разрывом. Найдите показания двух вольтметров, подключенных к точкам разрыва и . Внутреннее сопротивление вольтметров считать равным бесконечности. Вне стержня магнитное поле отсутствует.

Рис. 2.32. Проводящее кольцо с разрывом, охватывающее магнитопровод

61-9. Первичная катушка намотана на цилиндрический неферромагнитный каркас (рис. 2.33). Длина катушки существенно больше линейных размеров сечения . Ток катушки . Найдите напряжение на разрыве вторичной катушки, состоящей из одного витка. Число витков первичной катушки w1.

Рис. 2.33. К определению электрического поля индуцируемого переменным во времени магнитным полем

62-10. Чем порождается электрическое поле?

63-11. Чем порождается магнитное поле?

64-12. Как выявляется (измеряется) электрическое поле?

65-13. Как выявляется (измеряется) магнитное поле?

66-14. По проводящему круговому контуру протекает ток (рис. 2.34). Зарисуйте приближенно силовые линии магнитного и электрического полей.

Рис. 2.34. Круговой проводящий контур с переменным во времени током

67-15. Равномерно заряженный шарик с зарядом движется равномерно и прямолинейно вдоль оси (рис. 2.35). Найдите плотность тока смещения в точке М в момент времени , если в этот момент времени расстояние от шарика до точки М равно . Напряженность электрического поля движущегося заряда считать такой же, как и неподвижного ().

Рис. 2.35. К определению плотности тока смещения, создаваемого движущимся зарядом

68-16. Выведите первый закон Кирхгофа для узла электрической цепи из принципа непрерывности электрического тока.





Дата публикования: 2015-03-29; Прочитано: 261 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...