Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Закон Кулона как следствие закона Гаусса



Исходим из теоремы Гаусса, записав ее в единицах системы СИ[14], «Поток вектора напряжённости через поверхность пропорционален заряду, заключённому в эту поверхность»:

Для вывода Закона Кулона, будем рассматривать единственный точечный заряд в пределах замкнутой поверхности S, таким образом Q здесь будет величиной этого заряда.

Рассчитаем тот же поток прямым интегрированием по поверхности. Замечаем, что задача имеет сферическую симметрию относительно положения заряда. Из этого делаем вывод, что электрическое поле будет направлено прямо от заряда, а его величина будет одинакова для любых точек, расположенных на одинаковом расстоянии от заряда. Из этого следует, что суммарный поток будет проще всего сосчитать, если в качестве поверхности S выбрать сферу с центром в заряде. Действительно, напряжённость поля E тогда будет всюду ортогональна dS, а абсолютная величина вектора E (будем обозначать ее E) будет одинакова везде на этой сфере, и ее можно будет вынести за знак интеграла. Итак:

Имеем:

Отсюда:

Осталось подставить сюда для площади сферы и разрешить уравнение относительно E.

Тогда получаем:

то есть — закон Кулона.

5.

Если заряд распределён в объёме тела, то можно для его описания можно использовать объёмную плотность заряда. Выделим в теле малый объём ΔV, пусть его заряд Δq. Тогда объёмная плотность заряда равна ρ=Δq/ΔV. Если заряд распределён равномерно, то ρ=q/V.

Рассмотрим электрическое поле равномерно заряженного шара. Напомним, что объём шара равен V=(4/3)πR3. Тогда его заряд q=(4/3)πR3ρ. Напряжённость поля вне шара можно найти так же, как и вне сферы:
|q| 4πR3ρ
Е=k——=k——— при r>R.
εr2 3εr2

Для нахождения напряжённости внутри шара применим теорему Гаусса для сферической поверхности радиусом r<R. По соображениям симметрии вектор напряжённости перпендикулярен ей и одинаков по модулю в любой её точке. По теореме Гаусса:

q 4πr3ρ
4πr2En=4πk—=4πk———, тогда
ε 3ε

E=k—ρr при r<R.

Напряжённость поля внутри шара линейно растёт с увеличением расстояния от его центра. Если мы рассматриваем действие поля шара на заряд, находящийся на расстоянии r от его центра, то шар можно мысленно разделить сферой радиусом r на две части. Действие поля равно действию поля внутренней части, а внешняя поля не создаёт (внутри себя заряженная сфера поля не создаёт). Вот ещё одно сходство взаимодействия зарядов с законом всемирного тяготения: ускорение свободного падения a=Fт/m внутри сферического однородного тела (например, Земли) также обратно пропорционально расстоянию до центра, как и напряжённость E=Fк/q.

6.

Если заряд распределён по поверхности, удобно пользоваться понятием поверхностной плотности заряда. Выделим на плоской поверхности малый участок площадью ΔS; пусть его заряд Δq. Тогда поверхностная плотность заряда равна σ =Δq/ΔS. Если заряд распределён равномерно, то σ =q/S.

Рассмотрим бесконечную равномерно заряженную плоскость. Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. Выделим цилиндр, перескающий плоскость, образующие которого параллельны силовым линиям (и перпендикулярны плоскости), а основания параллельны плоскости (и перпендикулярны силовым линиям). Поток через боковую поверхность цилиндра равен нулю, а через основания одинаков и равен N=2EnS. Заряд внутри цилиндра равен σS. По теореме Гаусса:

σS
2EnS=4πk—, тогда
ε
|σ| |σ| 2π|σ|
Е=2πk— = —— (в СИ) = —— (в СГСЭ).
ε 2ε0ε ε





Дата публикования: 2015-01-24; Прочитано: 813 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...