Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Фундаментальные взаимодействия и мировые константы



Рассмотрим характер взаимодействия элементарных частиц. Частицы взаимодействуют между собой путем обмена квантами силовых полей, и, как установлено к настоящему времени, в природе наблюдается четыре типа сил, четыре фундаментальных взаимодействия:

сильное (ядерное, связывающее протоны и нейтроны в ядрах химических элементов);

электромагнитное;

слабое (ответственное за сравнительно медленные бета-распады)

гравитационное (приводящее к закону всемирного тяготения Ньютона). Гравитационное и электромагнитное взаимодействия относятся к силам, возникающим в гравитационных и электромагнитных полях. Природа гравитационного взаимодействия, количественно установленного еще Ньютоном, до сих пор полностью не определена, и не ясно, как передается это действие через пространство.

Ядерные силы, относящиеся к сильным взаимодействиям, действуют на малых расстояниях, около 10-15 м, в ядрах и обеспечивают их устойчивость, преобладая над отталкивающим действием кулоновских сил электромагнитных полей. Поэтому ядерные силы являются в основном силами притяжения и действуют между протонами (рр) и нейтронами (пп). Существует также протон — нейтронное взаимодействие (pп). Поскольку эти частицы объединены в одну группу нуклонов, то это взаимодействие называется также нуклон-нуклонным.

Слабые взаимодействия проявляются в процессах ядерного распада или более широко — в процессах взаимодействия электрона и нейтрино (оно может существовать также и между любыми парами элементарных частиц).

Как мы уже знаем, гравитационное и электромагнитное взаимодействие меняются с расстоянием как 1/ r 2 и являются дальнодействующими. Ядерное (сильное) и слабое взаимодействия являются короткодействующими. По своей величине основные взаимодействия располагаются в следующем порядке: сильное (ядерное), электрическое, слабое, гравитационное.

Предполагается, что квантами — переносчиками этих четырех силовых полей являются соответственно: для сильного взаимодействия — безмассовые глюоны (8); для электромагнитного — безмассовые фотоны (кванты света со спином 1); для слабого — бозоны (три частицы в 90 раз тяжелее протона) и для гравитационного — безмассовые гравитоны (со спином 2).

Глюоны склеивают и удерживают кварки внутри протонов и ядер. Кванты всех этих полей взаимодействий имеют целочисленные спины и поэтому являются бозонами, в отличие от частиц — фермионов, имеющих спин 1/2. Глюоны и кварки обладают своеобразным «зарядом», который принято называть «цветовым зарядом» или просто «цветом». В квантовой хромодинамике допустимыми считают только три цвета — красный, голубой и зеленый. Глюоны и кварки не удалось пока наблюдать непосредственно, и считают, что цветные кварки «не имеют права» вылетать наружу из ядер, подобно тому как фононы — кванты тепловых колебаний кристаллической решетки атомов — существуют только внутри твердых тел. Это свойство связывания, или удержания, кварков и глюонов в адронах называется конфайнментом. Вылетать из ядер наружу и наблюдаться имеют право лишь белые («бесцветные») комбинации кварков в виде адронов — барионов и мезонов, которые возникают в ядерных реакциях при столкновениях различных частиц. Любопытно, что одиночный кварк, появившийся в результате каких-то процессов, практически мгновенно (в течение 10-21 с) «достраивает» себя до адрона и вылететь из адрона уже не может.

Четырем фундаментальным взаимодействиям соответствуют четыре мировые константы. Подавляющее число физических констант имеет размерности, зависящие от системы единиц отсчета, например, в СИ (Международной системе единиц — системе интернациональной) заряд е =1,6 · 10-19 Кл, его масса т = 9,1 · 10-31 кг. В различных системах отсчета основные единицы имеют различные числовые значения и размерности. Такое положение не устраивает науку, так как удобнее иметь безразмерные константы, не связанные с условным выбором исходных единиц и систем отсчета. Кроме того, фундаментальные константы не выводят из физических теорий, а определяют экспериментально. В этом смысле теоретическую физику нельзя считать самодостаточной и законченной для объяснения свойств природы, пока проблема, связанная с мировыми константами, не будет понята и объяснена.

Анализ размерностей физических констант приводит к пониманию того, что они играют очень важную роль в построении отдельных физических теорий. Однако если попытаться создать единое теоретическое описание всех физических процессов, т.е., другими словами, сформулировать унифицированную научную картину мира от микро- до макроуровня, то главную, определяющую роль должны играть безразмерные, т.е. «истинно» мировые, константы. Таковы константы основных взаимодействий.

Константа гравитационного взаимодействия:

.

Константа электромагнитного взаимодействия:

.

Константа сильного взаимодействия:

,

где цветовой заряд(индекс «s» от английского слова «strong» — сильный.)

Константа слабого взаимодействия:

,

где g ~ 1,4·10-62 Дж·м3константа Ферми. (Индекс «w» от английского слова «weak» — слабый.) Заметим, что размерную константу гравитационного взаимодействия получил еще сам И. Ньютон: G ~ 6,67·10-11 м3·с2·кг-1 .

Известно, что этот закон всемирного тяготения недоказуем, так как получен путем обобщения опытных фактов. Причем абсолютная справедливость его не может быть гарантирована до тех пор, пока не станет ясным сам механизм тяготения. Константа электромагнитного взаимодействия отвечает за превращение заряженных частиц в такие же частицы, но при изменении скорости их движения и появлении дополнительной частицы — фотона. Сильное и слабое взаимодействия проявляются в процессах микромира, где возможны взаимопревращения частиц. Поэтому константа сильного взаимодействия количественно определяет взаимодействия барионов. Константа слабого взаимодействия связана с интенсивностью превращений элементарных частиц при участии нейтрино и антинейтрино.

Считают, что все четыре вида взаимодействия и их константы обусловливают нынешнее строение и существование Вселенной. Так, гравитационное — удерживает планеты на их орбитах и тела на Земле. Электромагнитное — удерживает электроны в атомах и соединяет их в молекулы, из которых состоим и мы сами. Слабое — обеспечивает длительное «горение» звезд и Солнца, дающего энергию для протекания всех процессов жизни на Земле. Сильное взаимодействие обеспечивает возможность стабильного существования большинства ядер атомов. Теоретическая физика показывает, что изменение числовых значений этих или других констант приводит к разрушению устойчивости одного или нескольких структурных элементов Вселенной. Так, например, увеличение массы электрона m 0 от ~ 0,5 МэВ до 0,9 МэВ нарушит энергетический баланс в реакции образования дейтерия в солнечном цикле и приведет к дестабилизации стабильных атомов и изотопов. Дейтерий — атом водорода, состоящий из протона и нейтрона. Это «тяжелый» водород с А = 2 (тритий имеет А = 3.) Уменьшение всего на 40% привело бы к тому, что дейтерий был бы не стабилен. Увеличение же сделает стабильным бипротон, что приведет к выгоранию водорода на ранних стадиях эволюции Вселенной. Константа изменяется в пределах 1/170 < < 1/80. Другие значения приводят к невозможности должного отталкивания протонов в ядрах, а это ведет к нестабильности атомов. Увеличение привело бы к уменьшению времени жизни свободных нейтронов. Это означает, что на ранней стадии Вселенной гелий не образовался бы и не было бы реакции слияния α частиц при синтезе углерода 3α —> 12С. Тогда вместо нашей углеродной была бы водородная Вселенная. Уменьшение привело бы к тому, что все протоны оказались бы связаны в α частицы (гелиевая Вселенная).

В современном естествознании предполагается, что мировые константы стабильны начиная со времени 10-35 с с момента рождения Вселенной и что, таким образом, в нашей Вселенной как бы существует очень точная «подгонка» числовых значений мировых констант, обусловливающих необходимые значения для существования ядер, атомов, звезд и галактик. Возникновение и существование такой ситуации не ясно. Такая «подгонка» (константы именно такие, какие они есть!) создает условия для существования не только сложных неорганических, органических, но и живых организмов, в том числе и человека. П. Дирак высказал идею о совместном изменении во времени фундаментальных констант. В целом можно считать, что многообразие и единство физического мира, его порядок и гармония, предсказуемость и повторяемость формируются и управляются системой небольшого числа фундаментальных констант.

14. Диалектическое противоречие«порядок – беспорядок»





Дата публикования: 2015-01-23; Прочитано: 1941 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...