Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

В изолированных системах самопроизвольно могут совершаться процессы, при которых энтропия системы возрастает, т.е. ∆S>0



Для неизолированных систем нужно учитывать не только изменение энтропии, но и изменение энергии. Поэтому необходимо рассматривать две тенденции, определяющие направление самопроизвольно протекающих процессов:

Стремление системы к достижению минимума энергии;

Стремление системы к максимуму энтропии, т.е. к неупорядоченности.

Таким образом, изменение энтропии является однозначным критерием самопроизвольности реакции, протекающей в изолированной системе:

∆S>0 – реакция протекает самопроизвольно;

∆S=0 - реакция находится в состоянии равновесия;

∆S<0 – реакция самопроизвольно не протекает.

Энергия Гиббса и направление химических реакций.

Биохимические реакции обычно происходят при изобарно- изотермических условиях. В этих условиях энергетическое состояние системы характеризуется энтальпией, а мерой неупорядоченности системы будет произведение температуры и энтропии. Функцией, учитывающей обе эти характеристики и противоположность в тенденции их изменения при самопроизвольных процессах, является свободная энергия Гиббса.

Энергия Гиббса (или изобарно – изотермический потенциал) является обобщенной функцией состояния системы, учитывающей энергетику и неупорядоченность системы при изобарно – изотермических условиях.

Названа она в честь одного из основателей химической термодинамики, американского ученого Джозайи Уилларда Гиббса (1839 – 1903).

Изменение энергии Гиббса для биохимических процессов в условиях, отличных от стандартных, можно рассчитать на основе экспериментальных значений ∆Н и ∆S для этих процессов по уравнению:

∆G =∆Н - Т∆S,

где ∆Н - характеризует полное изменение энергии системы при p,T = const и отражает стремление системы к минимуму энергии (энтальпийный фактор);

Т∆S – характеризует ту часть энергии, которую нельзя превратить в работу, и отражает стремление системы к максимуму неупорядоченности (энтропийный фактор);

∆G – характеризует ту часть энергии, которую можно перевести в работу, и является термодинамическим критерием самопроизвольного протекания любых процессов при p,T = const.

Если в уравнение для расчета свободной энергии Гиббса ввести значение ∆Н°р. и ∆S°р., найденные с использованием следствия из закона Гесса, то мы получаем формулу для расчета ∆G реакции, протекающей в стандартных условиях:

∆G°p.f=∑νj∆G°j - ∑νi∆G°i

где∆G°j, ∆G°i – значения энергии Гиббса продуктов реакции и исходных веществ, νji - соответствующие стехиометрические коэффициенты в уравнении химической реакции.

В термодинамических расчетах используют значения энергии Гиббса, измеренные при стандартных условиях (∆G°, кДж/моль). Данные величины приведены в справочниках термодинамических величин. Для простых веществ в термодинамически устойчивой форме стандартная энергия Гиббса их образования принята равной нулю.

Таблица 12.

Значение ∆G°f 298 некоторых соединений.

Молекулярная формула ∆G°f 298, кДж/моль Молекулярная формула ∆G°f 298, кДж/моль
О2 (г)   HF(г) -275.41
НCl(г) -95.3 HI(г) 1.58
H2O(ж) -228.61 CH4 (г) -50.85
CO2(г) -394.37 C6H6(ж) 124.38
CO(г) -137.15 NO2 (г) 52.29
NO(г) 87.58 NH3 (г) -16.48
HCN(г) 121.58 NaСl(кр.) -384.13

Рассчитав ∆G химической реакции, можно не производя экспериментов, дать ответ о принципиальной (термодинамической) возможности (или невозможности) ее протекания:

∆G<0 – реакция протекает самопроизвольно;

∆G=0 – реакция находится в состоянии равновесия;

∆G>0 – несамопроизвольная реакция (самопроизвольна обратная реакция).

Знак ∆G, а значит, и самопроизвольность реакции зависит от величины соотношения ∆Н и Т∆S. Самопроизвольное осуществление реакции (∆G<0) возможно в следующих случаях:

1) ∆Н<0 (экзотермический процесс) и в то же время |∆Н |>| Т∆S |, т.е. при экзотермических процессах знаки ∆Н и ∆G совпадают, что означает возможность протекания процесса независимо от знака ∆S;

2) ∆Н>0 (эндотермический процесс) и |∆Н |<| Т∆S |, тогда возрастание энтальпии компенсируется значительно большим ростом энтропийного фактора, что осуществимо при высоких температурах или при реакциях с участием газовой фазы, когда наблюдается значительное увеличение энтропии. Этим и объясняется возможность протекания эндотермических реакций, что не согласуется с принципом Бертло о самопроизвольности только экзотермических реакций. Судить о направлении процесса по знаку изменения энтальпии в соответствии с этим признаком можно лишь: а) при низких температурах (при Т→0, Т∆S→0, и Т∆S<< ∆Н), когда знаки изменения свободной энергии и энтальпии совпадают; б) в конденсированных системах, в которых в процессе взаимодействия энтропия меняется незначительно, (беспорядок не может существенно возрасти, если, например, одно кристаллическое вещество превращается в другое кристаллическое вещество). Поэтому при низких температурах и в конденсированных системах возможно лишь протекание экзотермических реакций (∆G<0, когда ∆Н<0).

Возможность протекания реакции в зависимости от знака ∆Н и ∆S и температуры суммарно можно выразить в таблице:

Таблица 13.

Знак ∆Н Знак ∆S Знак ∆G Самопроизвольность реакции Пример
- + Всегда «-» Самопроизвольна при любых температурах 3 (г)→ 3О2 (г)
+ - Всегда «+» Несамопроизвольна при любых температурах   3О2 (г)→2О3 (г)
- - «-» при низких температурах «+» при высоких температурах Самопроизвольна при низких температурах, несамопроизвольна при высоких температурах   2Н2 (г)2 (г)→ →2Н2О(г)
+ + «+» при низких температурах, «-» при высоких температурах Несамопроизвольна при низких температурах, самопроизвольна при высоких температурах   2Н2О(г)→ →2Н2 (г)2 (г)

Второй закон термодинамики для любых систем формулируется следующим образом:

В системе при постоянной температуре и давлении самопроизвольно могут совершаться только такие процессы, в результате которых энергия Гиббса уменьшается, т.е. ΔGкон > ΔGнач, или ΔG < 0.

Для закрытых термодинамических систем наряду со свободной энергией Гиббса ∆G (изобарно-изотермический потенциал) в изохорных условиях (V = const) применяют функцию состояния системы энергию Гельмгольца (F) (изохорно– изотермический потенциал ). В химии энергия Гиббса имеет более широкое применение, чем энергия Гельмгольца, так как химические процессы чаще протекают при постоянном давлении, а не при постоянном объеме.

Энергия Гельмгольца находится по формуле:

F = U – T∙S, где U- внутренняя энергия системы

Энергия Гельмгольца характеризует работоспособность системы, т.е. определяет ту часть энергии, которая в изохорно-изотермическом процессе превращается в работу.

Энергию Гиббса можно выразить через энергию Гельмгольца следующим образом:

G = U + pV – TS = F + pV

Оба рассмотренных термодинамических потенциала являются функциями состояния, зависят от природы веществ – участников реакции, их массы и температуры. Кроме того, энергия Гиббса зависит от давления, а энергия Гельмгольца – от объема системы. Абсолютные значения термодинамических потенциалов неизвестны, а для расчетов пользуются обычно изменениями потенциалов (∆G и ∆F).





Дата публикования: 2015-01-23; Прочитано: 1142 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...