Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Равенство (2) называется формулой интегрирования по частям



Б о льшая часть интегралов, которые вычисляются посредством интегрирования по частям, может быть разбита на три группы:

1) интегралы представлены в виде , , ,

и т.д.

2) интегралы представлены в виде , ,

и т.д.

3) интегралы представлены в виде , , ,

производится двукратное интегрирование по частям и решается уравнение относительно интеграла.

Примеры:

1) Интеграл, относящийся к первому виду.

,

2) Интеграл, относящийся ко второму виду.

3) Интеграл, относящийся к третьему виду.

В результате двойного интегрирования по частям получили исходный интеграл. Обозначим его за I. Тогда получаем уравнение:

Следовательно: +С.

Практические задания:

Найти неопределенный интеграл:

а) непосредственное интегрирование;

b) метод подстановки;

в) метод интегрирования по частям;

метод интегрирования по частям.

Тема 6: «Определённый интеграл».

  1. Определение и площадь криволинейной трапеции.

Фигура на плоскости Оху, ограниченная графиком непрерывной и положительной функции на отрезке , отрезком и вертикальными прямыми и , называется криволинейной трапецией (рис.1).

Рис. 1
Y
O
a
b
y=f(x)
X

Величина площади криволинейной трапеции равна определённому интегралу от функции на отрезке : (1)

В этом заключается геометрический смысл определённого интеграла

2. Формула Ньютона-Лейбница.

Формула Ньютона-Лейбница это основная формула интегрального исчисления:

где F(x) – первообразнаяфункции f(x). (1)

Пример 1. .

Пример 2.

Пример 3.

Пример 4.

Пример 4. Найти площадь фигуры, ограниченной графиком функции , осью Ох и прямой .

 
 
О
Х
У
Рис. 2
Решение: Отрезок интегрирования: (рис.2), так что искомая площадь равна:

Пример 5. Найти площадь фигуры, ограниченной линиями .

y=x2
 
 
О
Х
У
Рис. 3
Решение: Вычислим абсциссы точек пересечения указанных кривых, для чего приравняем правые части этих уравнений: . Корни этого уравнения равны Следовательно, площадь фигуры, ограниченной сверху функцией и снизу функцией (рис.3) вычисляется с помощью определённого интеграла на отрезке :

3.
y=f(x)
Y
а
X
O
b
Рис. 4
Объём тела вращения

Объём тела, образованного при вращении вокруг оси Ох криволинейной трапеции, ограниченной сверху непрерывной и положительной на отрезке функцией (рис. 4), определяется формулой

(3)

Если тело образовано вращением криволинейной трапеции вокруг оси Oy, то, выражая х через у как обратную функцию, можно получить формулу для объёма тела вращения:

,

где - область изменения функции

Рассмотрим примеры вычисления объёмов тел, образованных вращением фигур, ограниченных следующими линиями.

Пример 1. вокруг оси Ох.

Решение: Искомый объём равен разности объёмов, образованных вращением криволинейных трапеций с верхними границами соответственно и . Пределы интегрирования определяются по точкам пересечения этих кривых: и . По формуле (7.12) получаем

Пример 2. вокруг оси Оу.

Решение: Выражаем х через у: ; промежуток интегрирования . Объём тела вращения (рис.5) равен разности объёмов соответственно цилиндра радиуса 1 и высоты е и тела вращения вокруг оси Оу криволинейной трапеции, ограниченной сверху кривой . По формуле нахождения объёма при вращении тела вокруг оси Oy получаем

 
Рис. 5
 
X
Y
e
y=ex

4. Основные свойства определённого интеграла

1. По определению полагаем

(1)

как определённый интеграл нулевой длины.

Также по определению полагаем, что

= - (2)

поскольку при движении от b к a все длины частичных отрезков имеют отрицательный знак в интегральной сумме (7.1).

2. Для любых чисел a, b и с имеет место равенство

= + . (3)

3. Постоянный множитель можно выносить за знак определённого интеграла:

= . (4)

4. Определённый интеграл от алгебраической суммы функций равен алгебраической сумме их определённых интегралов:

= . (5)

4. Вычисление определённых интегралов.





Дата публикования: 2015-02-03; Прочитано: 427 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...