Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Алгоритм нахождения промежутков возрастания и убывания функции



1. Найти область определения функции

2.Найти производную функции

3. Приравнять производную к нулю и найти критические точки функции

4. Отметить критические точки на области определения

5. Вычислить знак производной в каждом из полученных интервалов

6. Выяснить поведение функции в каждом интервале.

Пример: Найдите промежутки возрастания и убывания функции f (x) = и число нулей данной функции на промежутке [0; 10].

Решение:

1. D(f) = R

2. f '(x) =

D(f ') = D(f) = R

3. Найдём критические точки функции, решив уравнение f '(x) = 0.

x (x – 10) = 0

критические точки функции x = 0 и x = 10.

4. Определим знак производной.

f '(x) + – +


f (x) 0 10 x

в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; [10; +∞).

В промежутке (0; 10) производная отрицательная и в точках x = 0 и x = 10 функция f (x) непрерывна, следовательно, данная функция убывает на промежутке [0; 10].

Определим знак значений функции на концах отрезка.

f (0) = 3, f (0) > 0

f (10) = , f (10) < 0.

Так как на отрезке [0; 10] функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.

Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; [10; +∞);

функция f(x) убывает на промежутке [0; 10];

на промежутке [0; 10] функция имеет один нуль функции.

2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум.

Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.

Определение 2. Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.

Следует иметь в виду, что максимум и минимум в данном случае являются локальными.

На рис. 1. изображены локальные максимумы и минимумы.

Рис. 1. Точка – локальный максимум, точка – локальный минимум,
Максимум и минимум функции объединены общим названием: экстремум функции.

Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .

Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.





Дата публикования: 2015-02-03; Прочитано: 11579 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...