Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определение производной функции, геометрический и физический смыслы производной



Придадим значению аргумента х0 функции f(x), определённой на промежутке Х, произвольное приращение Δ х так, чтобы точка х0 + Δ х также принадлежала Х. Тогда соответствующее приращение функции f(x) составит Δ у = f(x + x0) – f(x0).

Определение 1. Производной функции f(x) в точке х0 называется предел отношения приращения функции в этой точке к приращению аргумента Δ х → 0 (если этот предел существует).

Для обозначения производной функции применяют символы или

(1)

Геометрический смысл производной

Определение 2. Касательной к графику функции y = f(x) в точке М называется предельное положение секущей MN, когда точка N стремится к точке М по кривой f(x).

φ(Δx)
φ0
φ0
f(x0+ )
f(x0)
x0+
x0
N
М
y=f(x)
Рис. 1

Таким образом, если производная функции f(x) в точке х0 существует, то

. (2)

Производная равна тангенсу угла между касательной к графику функции y = f(x) в точке М(х0, f(x0)) и положительным направлением оси (ох)

Физический смысл производной

Производная функции определяет мгновенную скорость функции.

3. Правила дифференцирования суммы, произведения, частного двух функций:

1. Если функции и дифференцируемы в данной точке , то в той же точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых:

(1)

Пример 1. Найти производную функции

2. Если функции и дифференцируемы в данной точке , то в той же точке дифференцируемо и их произведение. При этом производная произведения находится по следующей формуле:

(2)

Пример 2. Найти производную функции

3. Если функция дифференцируема в данной точке , то в той же точке дифференцируема и функция, представляющая собой произведение функции на константу . При этом данную константу можно вынести за знак производной:

(3)

Пример 3. Найти производную функции

4. Если в данной точке функции и дифференцируемы и , то в той же точке дифференцируемо и их частное , причем:

(4)

Пример 4. Найти производную функции

Таблица производных элементарных функций.

1. где С – постоянное число.

2. ; в частности, ,

3. в частности,

4. в частности,

5. 6.

7. 8.

4.Сложная функция и правило ее дифференцирования.

Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

(5)

Пример 1. Найти производную функции

Практические задания:

Найти производные функции:

1. 2.

3. 4.

5. 6.

Тема 4: «Применение производной функции в построении графиков функции».





Дата публикования: 2015-02-03; Прочитано: 402 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...