Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Интегрирование по мере



ПОВТОРНЫЙ ИНТЕГРАЛ

интеграл, в к-ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида

(1)

Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к-рых заданы s-конечные меры m x и m y, обладающие свойством полноты; множество ("сечение" множества А), измеримое относительно меры m х;. множество А у (проекция множества Ав пространство Y), измеримое относительно меры m у. Интегрирование по (у).производится по мере (m x, а по А у - по мере m y. Интеграл (1) обозначают также

К П. и. могут быть сведены кратные интегралы. Пусть функция f(x, у), интегрируемая по мере на множестве , продолжена нулем на все пространство , тогда П. и.

и

существуют и равны между собой:

(2)

(см. Фубини теорема). В левом интеграле внешнее интегрирование фактически производится по множеству . Таким образом, в частности, для точек множества (у).измеримы относительно меры m х. По всему множеству А у брать этот интеграл, вообще говоря, нельзя, т. к. при измеримом относительно меры m множества Амножество А у может оказаться неизмеримым относительно меры m y, так же, как и отдельные множества (у), , могут быть неизмеримы относительно меры m х.

Множество же всегда измеримо относительно меры m y, если только множество Аизмеримо относительно меры m.

Сформулированные условия возможности перемены порядка интегрирования в П. и. являются лишь достаточными, но не необходимыми: иногда перемена порядка интегрирования в П. и. допустима, а соответствующий кратный интеграл не существует.

Напр., для функции при x2+y2>0 и f(0, 0) = 0 П. и.

а кратный интеграл

не существует. Однако если существует хотя бы один из интегралов

или

то функция f интегрируема на множестве и справедливо равенство (2).

Для П. и. в случае, когда внутренний интеграл является интегралом Стилтьеса, а внешний - интегралом Лебега, справедлива следующая теорема о перемене порядка интегрирования: пусть функция g(x, у). суммируема по уна [с, d]для всех значений хиз [ а, b ]и является функцией ограниченной вариации по хна [ а, b ]для почти всех значений . Пусть, далее, полная вариация функции g(x, у).но переменной хна [a, b]при всех указанных значениях уне превышает нек-рой неотрицательной и суммируемой на [с, d] функции. Тогда функция является функцией ограниченной вариации от переменной хна [а, b]и для любой непрерывной на [а, b]функции f(х).имеет место формула


2Вопросы по теме «интегралы одной переменной»





Дата публикования: 2015-01-10; Прочитано: 224 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...