Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Несобственный интеграл с бесконечным пределом (ами) интегрирования



Иногда такой несобственный интеграл еще называют несобственным интегралом первого рода. В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так: . В чем его отличие от определенного интеграла? В верхнем пределе. Он бесконечный: .

Реже встречаются интегралы с бесконечным нижним пределом или с двумя бесконечными пределами: .

Мы рассмотрим самый популярный случай . Техника работы с другими разновидностями – аналогична, и в конце параграфа будет ссылка на такие примеры.

Всегда ли существует несобственный интеграл? Нет, не всегда. Подынтегральная функция должна быть непрерывной на интервале

Справка: строго говоря, утверждение неверно: если есть разрывы функции, то в ряде случаев можно разбить интервал на несколько частей и вычислить несколько несобственных интегралов. Для простоты здесь и далее я буду говорить, что несобственного интеграла не существует.

Изобразим на чертеже график подынтегральной функции . Типовой график и криволинейная трапеция для данного случая выглядит так:


Здесь всё хорошо, подынтегральная функция непрерывна на интервале , а, значит, несобственный интеграл существует. Обратите внимание, что криволинейная трапеция у нас – бесконечная (не ограниченная справа) фигура.
Несобственный интеграл численно равен площади заштрихованной фигуры, при этом возможны два случая:

1) Первое, мысль, которая приходит в голову: «раз фигура бесконечная, то », иными словами, площадь тоже бесконечна. Так быть может. В этом случае говорят, что, что несобственный интеграл расходится.

2) Но. Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например: . Может ли так быть? Запросто. Во втором случае несобственный интеграл сходится.

В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции , и конкретные примеры мы очень скоро рассмотрим.

А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае, несобственный интеграл (расходится) либо равен отрицательному числу.

Несобственный интеграл может быть отрицательным.

Важно! Когда Вам для решения предложен ЛЮБОЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно. Ваша задача найти ЧИСЛО либо доказать, что несобственный интеграл расходится. Геометрический смысл несобственного интеграла я рассказал только для того, чтобы легче было понять материал.

Коль скоро, несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница: . На самом деле формула применима и к несобственным интегралам, только ее нужно немного модифицировать. В чем отличие? В бесконечном верхнем пределе интегрирования: . Наверное, многие догадались, что это уже попахивает применением теории пределов, и формула запишется так: .

В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию (неопределенный интеграл), уметь применять формулу Ньютона-Лейбница. Единственное, что добавилось – это вычисление предела. У кого с ними плохо, изучите урок Пределы функций. Примеры решений, ибо лучше поздно, чем в армии.

Рассмотрим два классических примера:

Пример 1

Вычислить несобственный интеграл или установить его расходимость.

Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно.

Подынтегральная функция непрерывна на интервале , значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.

Применение нашей формулы и решение задачи выглядит так:

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.

В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому-что любая буква ничем не хуже стандартного «икса».

Если Вам непонятно почему при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции. Во втором случае посетите урок Графики и свойства элементарных функций.

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Чистовое оформление задания должно выглядеть примерно так:



Подынтегральная функция непрерывна на



Несобственный интеграл расходится.

! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией. Этим мы идентифицируем тип несобственного интеграла и тот факт, что его вообще можно решить.

Если Вам встретится интеграл вроде , то с вероятностью, близкой к 100%, можно сказать, что это опечатка. Здесь подынтегральная функция не является непрерывной на интервале интегрирования , она терпит разрыв в точке . Формально можно вычислить два несобственных интеграла на интервалах и , а потом их сложить, но с практической точки зрения – такая вещь является чистым бредом. Опечатка.





Дата публикования: 2015-01-10; Прочитано: 237 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...