Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Второе начало термодинамики



Второе начало термодинамики можно сформулировать разными эквивалентными способами. Однако для этого надо ввести несколько новых понятий. Начать можно с рассмотрения цикла и машины Карно.

В машине Карно тепло от нагревателя передавалось рабочему телу, которое совершало полезную работу А и одновременно передавало тепло холодильнику. Ясно, что лучше та тепловая машина, у которой меньше, т.е. КПД больше. Но еще в 1824 году Карно пришел к выводу, что не может равняться нулю, то есть построить идеальную тепловую машину невозможно. Такая машина была бы вечным двигателем второго рода, а все попытки построить такую машину оказывались неудачными. Таким образом, первая формулировка Второго начала термодинамики звучит как утверждение: «Невозможно построить вечный двигатель второго рода, который работал за счет тепла , взятого от нагревателя». Обязательно должен быть холодильник, куда сбрасывалось некоторое количество тепла . Любая тепловая машина будет работать только до тех пор, пока . Можно сказать также, что тепловое движение неустранимо. При выравнивании этих температур должна была бы наступить «Тепловая смерть Вселенной».

С этим определением тесно связано утверждение «При тепловом контакте двух тел тепло переходит от более нагретого тела к менее нагретому». Это тоже формулировка Второго начала термодинамики.

Отсюда следует еще одна формулировка Второго начала. Чтобы понять её, надо вначале ввести понятия обратимого и необратимого процессов.

Пусть имеется замкнутый цикл переходов между термодинамическими состояниями типа . Назовем его «прямым» замкнутым циклом. Цикл называется «обратным». Если можно переводить систему и прямым образом, и обратным, то говорят, что в такой системе существуют обратимые процессы. В противном случае процесс необратимый. Обратимость процессов связана с понятием энтропии (см. точное определение ниже). Второе начало утверждает, что энтропия замкнутой системы не убывает (остается постоянной у обратимых процессов и возрастает у остальных процессов). Сразу заметим, что у подсистемы, т.е. у части замкнутой системы энтропия может убывать с одновременным ростом энтропии всей системы.





Дата публикования: 2014-12-11; Прочитано: 269 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...