Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Понятие множества



Множество - фундаментальное неопределяемое понятие. Множество понимается как объединение в одно целое объектов, хорошо различимых нашей интуицией или мыслью.

Теорию множеств можно подразделить на аксиоматическую и интуитивную (наивную).

Аксиоматическая теория исходит из того, что множество определяется совокупностью аксиом, записанных обычно на языке логики (предикатов). Интуитивная теория множеств апеллирует к интуиции, к базовому понятию принадлежности элемента множеству, то есть к интуитивной понятности отношения принадлежности Î (а Î A - элемент а принадлежит множеству A).

Для интуитивного понятия множества существенны два момента, следующие из "определения":

1. Различимость элементов.

2. Возможность мыслить их как нечто единое.

Студенты образуют группу. Деревья составляют лес.

Целые числа составляют множество целых чисел.

Жители Марса - множество марсиан.

Множество, не содержащее элементов, называется пустым множеством и обозначается Æ или {}. Обычно именно фигурные скобки используются для выделения множества (отсутствие элементов в скобках и говорит о том, что это пустое множество).

Множество, заведомо содержащее все рассматриваемые элементы, называется универсальным или универсумом - U.

Было бы опрометчиво говорить просто, что U содержит все элементы. К сожалению, имеют место так называемые парадоксы теории множеств. Самый знаменитый – парадокс Рассела, который показывает невозможность построить множество всех подмножеств, не содержащих себя в качестве элемента. Более прост в понимании парадокс брадобрея, которому приказано брить в тридевятом государстве всех тех и только тех, кто не бреется сам.Перед брадобреем неразрешимый вопрос:

Включать ли самого себя в множество тех, кого он обязан брить?!

Способы задания множеств:

A = {a, b, c, d} - задание множества явным перечислением элементов.

Например, гвардия = {Иванов, Петров, Сидоров}

B = {x | С(x)} - задание множества (характеристическим) свойством С(x).

Например, студенчество = {x | x - студент} - множество таких х, что х - студент.

Отношение включения Í. Множество А включено в множество В (А Í В) или А есть подмножество множества В, если из х Î А следует х Î В.

Например, студенческая группа Í студенты данной специальности

Отношение строгого включения Ì: Если A Í B и A ¹ B, то можно написать

A Ì B.

Например: Æ Ì множество отличников

Кстати, на что намекает это отношение?

Свойства отношения включения:

1. Рефлексивность: A Í A

2. Принцип объемности: A Í B и B Í A следует B = A (на основе этого принципа и доказывается равенство двух множеств).

3. Транзитивность: A Í B и B Í C следует A Í C

Полезные соотношения:

{ }= Æ; 1 ¹ { 1 }; {{ 1 }} ¹ { 1 }; { а, в } = { в, а }





Дата публикования: 2014-11-03; Прочитано: 249 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...