Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Мутации у бактерий



Фенотипическое проявление мутаций. Поскольку мутация - это стабильное изменение наследственного материала клетки, она реализуется по тем же каналам, что и любая другая генетическая информация. На этом пути судьба мутаций различна. Некоторые из них не влияют на признаки организма, оставаясь «молчащими». Такие мутации могут не проявляться в процессе трансляции, т. е. не приводить к изменению аминокислотной последовательности синтезируемого белка. В другом случае изменение может происходить вдали от активного центра фермента и потому не сказываться на его функции. Если же мутация приводит к изменению в активном центре или резко влияет на его структуру, это сразу сказывается на функциях фермента. Диапазон изменения функциональной активности фермента в этом случае велик: от незначительного понижения активности до полной ее потери. В последнем случае это часто приводит к гибели организма.

Для проявления мутации необходимо, чтобы прошел по крайней мере один цикл репликации ДНК, в которой исходно имело место изменение нуклеотидной последовательности (премутация). Только если это исходное изменение закрепится после репликации в дочерней молекуле ДНК, оно становится стабильным, а отсюда и наследственным. Для выражения мутации в фенотипе необходимо прохождение этапов транскрипции и трансляции. Иногда для проявления мутационно измененного признака, т.е. фенотипического выражения мутации, необходимо несколько клеточных делений. Так, если мутация привела к нарушению способности синтезировать какой-либо витамин, например тиамин, то в течение нескольких генераций потребность в тиамине у мутантных клеток не обнаруживается. В этот период мутантные клетки доиспользуют тиамин, содержащийся в исходной немутантной клетке. Когда же запасы витамина иссякнут, мутанты смогут размножаться только при добавлении экзогенного тиамина.

На проявление мутантных признаков влияет также количество копий хромосомы, содержащихся в клетке. Все прокариоты гаплоидны, имеют набор генов, локализованных в одной хромосоме. В определенных условиях в клетке можно обнаружить несколько копий одной хромосомы. Если в такой клетке произошла мутация, приведшая к нарушению синтеза определенного метаболита, то она сразу (после одного цикла репликации-транскрипции-трансляции) не проявится, поскольку синтез необходимого клетке метаболита будет осуществляться в результате функционирования неповрежденных генов, содержащихся в остальных хромосомных копиях. Для фенотипического выражения мутантного гена необ­ходимо, чтобы он содержался в клетке в «чистом» виде, т.е. клетка имела одну копию хромосомы с мутантным геном, или чтобы все копии хромосомы в клетке имели одинаковый генотип. Это происходит через несколько клеточных делений.

Мутации - это изменения в последовательности отдельных нуклеотидов ДНК, которые фенотипически ведут к таким проявлениям, как изменения морфологии бактериальной клетки, возникновение потребностей в факторах роста, например в аминокислотах, витаминах, т.е. ауксотрофности, к устойчивости к антибиотикам, изменению чувствительности к температуре, снижению вирулентности (аттенуация) и т.д.

Мутация, приводящая к потере функции, называется прямой мутацией. У мутантов может произойти восстановление исходных свойств, т.е. реверсия (от англ. reverse - обратный). Если происходит восстановление исходного генотипа, то мутация, восстанавливающая генотип и фенотип, называется обратной или прямой реверсией. Если мутация восстанавливает фенотип, не восстанавливая генотип, то такая мутация называется супрессорной. Супрессорные мутации могут возникать как в пределах того самого гена, в котором произошла первичная мутация, так и в других генах или могут быть связаны с мутациями в тРНК.

По протяженности изменений повреждения ДНК различают мутации точечные, когда повреждения ограничиваются одной парой нуклеотидов, и протяженные или аберрации. В последнем случае могут наблюдаться выпадения нескольких пар нуклеотидов, которые называются делецией, добавление нуклеотидных пар, т.е. дупликации, перемещения фрагментов хромосомы, транслокации и перестановки нуклеотидных пар - инверсии.

Мутации могут быть спонтанными, т.е. возникающими самопроизвольно, без воздействия извне, и индуцированными.

Точечные спонтанные мутации возникают в результате ошибок при репликации ДНК, что связано с таутомерным перемещением электронов в азотистых основаниях.

Тимин (Т), например, обычно находится в кетоформе, в которой он способен образовывать водородные связи с аденином (А). Но если тимин во время спаривания оснований при репликации ДНК переходит в енольную форму, то он спаривается с гуанином. В результате в новой молекуле ДНК на месте, где раньше стояла пара А-Т, появляется пара Г-Ц.

Спонтанные хромосомные аберрации возникают вследствие перемещения подвижных генетических элементов. Индуцированные мутации появляются под влиянием внешних факторов, которые называются мутагенами. Мутагены бывают физическими (УФ-лучи, γ-радиация), химическими (аналоги пуриновых и пиримидиновых оснований, азотистая кислота и ее аналоги и другие соединения) и биологическими - транспозоны.

Аналоги пуриновых и пиримидиновых оснований, например 2-аминопурин, 5-бромурацил, включаются в нуклеотиды, а следовательно, и в ДНК, но при этом они значительно чаще в силу таутомерных превращений спариваются с «неправильными» партнерами, в результате вызывая замену пурина другим пурином (А-Г) или пиримидина другим пиримидином (Т-Ц). Замена пурина другим пурином, а пиримидина другим пиримидином называется транзицией.

Азотистая кислота и ее аналоги вызывают дезаминирование азотистых оснований, результатом чего являются ошибки при спаривании и как следствие возникновение транзиции. Аденин в результате дезаминирования превращается в гипоксантин, который спаривается с цитозином, что приводит к возникновению транзиции AT-ГЦ. Гуанин же при дезаминировании превращается в ксантин, который по-прежнему спаривается с цитозином; таким образом, дезаминирование гуанина не сопровождается мутацией.

Акридин и профлавин внедряются между соседними основаниями цепи ДНК, вдвое увеличивая расстояние между ними. Это пространственное изменение при репликации может привести как к утрате нуклеотида, так и к включению дополнительной нуклеотидной пары, что приводит к сдвигу рамки считывания тРНК. Начиная с того места, где произошло выпадение или включение нуклеотида, информация считывается неправильно.

УФ-облучение затрагивает преимущественно пиримидиновые основания, при этом два соседних остатка тимина ДНК могут оказаться ковалентно связанными.

На бактериях, подвергнутых УФ-облучению, было показано, что повреждения, вызванные облучением в бактериальных ДНК, могут частично исправляться благодаря наличию репарационных систем. У различных бактерий имеется несколько типов репарационных систем. Один тип репарации протекает на свету, он связан с деятельностью фотореактивирующегося фермента, который расщепляет тиминовый димер. При темновой репарации дефектные участки цепи ДНК удаляются и образовавшаяся брешь достраивается при помощи ДНК-полимеразы на матрице сохранившейся цепи и соединяется с цепью лигазой.





Дата публикования: 2015-10-09; Прочитано: 783 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...