Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Углеводы и их значение в питании



Углеводы являются основными энергонесущими макронутри-ентами в питании человека, обеспечивая 50... 70 % общей энерге­тической ценности рациона. Они способны при метаболизации образовывать макроэргические соединения, причем как в аэроб­ных, так и анаэробных условиях. В результате метаболизации 1 г углеводов организм получает энергию, эквивалентную 4 ккал. Об­мен углеводов тесно связан с обменом жиров и белков, что обес­печивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком де­фиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконео-генеза, приводящий к получению необходимой организму энер­гии. В обратной ситуации происходит активация липонеогенеза и из лишних углеводов синтезируются жирные кислоты, отклады­вающиеся в депо.

Наряду с основной энергетической функцией углеводы уча­ствуют в пластическом обмене. Глюкоза и ее метаболиты (сиало-вые кислоты, аминосахара) являются составными частями гли-копротеидов, к которым относятся большинство белковых соеди­нений крови (трансферрин, иммуноглобулины), ряд гормонов, ферментов, факторов свертывания крови. Гликопротеиды, а так­же гликолипиды участвуют вместе с белками и липидами в струк­турной и функциональной организации биомембран и играют при этом ведущую роль в процессах клеточной рецепции гормонов и других биологически активных соединений и в межклеточном вза­имодействии, имеющем существенное значение для нормального клеточного роста, дифференцировки и иммунитета. Углеводы пищи также являются предшественниками гликогена и триглицеридов; они служат источником углеродного основания заменимых ами­нокислот, участвуют в построении коферментов, нуклеиновых кислот, аденозинтрифосфорной кислоты (АТФ) и других биоло­гически важных соединений. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующе­гося при окислении жирных кислот..


Углеводы — это полиатомные альдегидо- и кетоспирты. Они образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все боль­шее значение в питании приобретают добавленные углеводы, ко­торые чаще всего представлены сахарозой (или смесями других Сахаров), получаемой промышленным способом и вводимой за­тем в пищевые рецептуры.

Все углеводы делятся по степени полимеризации на простые и сложные. К простым относятся так называемые сахара — моноса­хариды: гексозы (глюкоза, фруктоза, галактоза), пентозы (ксило­за, рибоза, дезоксирибоза) и дисахариды (лактоза, мальтоза, га­лактоза, сахароза).

Сложными углеводами являются олигосахариды, состоящие из нескольких (3...9) остатков моносахаридов (рафиноза, стахиоза, лактулоза, олигофруктоза) и полисахариды. Полисахариды пред­ставляют собой высокомолекулярные полимерные соединения, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на крах­мальные и некрахмальные, которые в свою очередь могут быть растворимыми и нерастворимыми.

Моно- и дисахариды. Они обладают сладким вкусом и поэтому называются сахарами. Степень сладости различных Сахаров неоди­накова. Если сладость сахарозы принять за 100 %, то сладость дру­гих Сахаров составит, %:

Фруктозы........................................................ 173

Глюкозы........................................................ 81

Мальтозы и галактозы..................................... 32

Рафинозы...................................................... 23

Лактозы........................................................... 16

Полисахариды сладким вкусом не обладают.

Природными источниками простых углеводов являются фрук­ты, ягоды, овощи, плоды, в некоторых из которых содержание Сахаров достигает 4... 17 % (табл. 2.11).

Глюкоза (альдегидоспирт) является основным структурным мо­номером всех важнейших полисахаридов — крахмала, гликогена, Целлюлозы. Она поступает с питанием изолированно в составе ягод, фруктов, плодов и овощей, а также в качестве компонента наиболее распространенных дисахаридов: сахарозы, мальтозы, лактозы. Глю­коза быстро и практически в полном объеме усваивается в желудоч­но-кишечном тракте, поступает в кровь и разносится ко всем орга­нам и тканям для окисления, сопряженного с образованием энер­гии. Уровень глюкозы в крови наряду с уровнем ряда аминокислот является сигналом для соответствующих структур головного мозга, моделирующих аппетит и пищевое поведение человека. Избыток глю­козы быстро превращается в депонирующиеся триглицериды.



Таблица 2.11

Содержание природных Сахаров в пищевых продуктах на 100 г, г (в порядке убывания)

Фруктоза в отличие от глюкозы является кетоспиртом и обла­дает другой динамикой распределения и метаболизации в орга­низме. Она почти в два раза медленнее всасывается в кишечнике и в большей степени задерживается в печени. Фруктоза переходит в глюкозу в клеточных обменных процессах, но увеличение кон­центрации глюкозы в крови происходит при этом плавно и посте­пенно, с меньшим напряжением инсулярного аппарата. В то же время фруктоза по более короткому метаболическому пути по срав-



ние в питании кисло-молочных продуктов (кефира, йогурта, сме­таны), а также творога и сыра, как правило, не вызывают подоб­ной клинической картины. Непереносимость молока отмечается у 30...35 % взрослого населения Европы, в то время как у жителей Африки — более чем у 75 %.

Мальтоза, или солодовый сахар, в свободном виде встречается в меде, солоде, пиве, патоке и продуктах, изготавливаемых с до­бавлением патоки (кондитерские и хлебобулочные изделия). В орга­низме мальтоза представляет собой промежуточный продукт и обра­зуется в результате расщепления в желудочно-кишечном тракте полисахаридов. Затем она диссимилирует до двух молекул глюкозы. В некоторых фруктах (яблоках, грушах, персиках) и ряде ово­щей встречается спиртовая форма Сахаров — сорбит, являющий­ся восстановленной формой глюкозы. Он способен поддерживать уровень глюкозы в крови, не вызывая чувства голода и не напря­гая инсулярный аппарат. Сорбит и другие многоатомные спирты, такие как ксилит, маннит или их смеси, обладая сладким вкусом (30...40 % сладости глюкозы), используются для производства ши­рокого ассортимента пищевых продуктов, в первую очередь для питания больных сахарным диабетом, а также жевательной ре­зинки. К недостаткам многоатомных спиртов относится их влия­ние на кишечник, выражающееся в послабляющем эффекте и повышенном газообразовании.

Олигосахариды. Олигосахариды, к которым относятся рафино-за, стахиоза, вербаскоза, в основном содержатся в бобовых и про­дуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде. К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышлен-но производимых из полисахаридного сырья сиропов, паток. Од­ним из представителей олигосахаридов является лактулоза, обра­зующаяся из лактозы в процессе тепловой обработки молока, на­пример при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком ки­шечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедея­тельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам — веществам, частично фер­ментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза ки­шечника.

 

Полисахариды. Основным усваиваемым полисахаридом явля­ется крахмал — пищевая основа зерновых, бобовых и картофеля.


Он представляет из себя сложный полимер (в качестве мономера, в котором находится глюкоза), состоящий из двух фракций: ами­лозы — линейного полимера (200...2000 мономеров) и амило-пектина — разветвленного полимера (10 000... 1 000000 мономе­ров). Именно соотношение этих двух фракций в различных сырь­евых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности рас­творимость в воде при разной температуре.

Для облегчения усвоения крахмала организмом продукт, со­держащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последователь­ной, начиная с ротовой полости, ферментации до мальтодекст-ринов, мальтозы и глюкозы с последующим практически пол­ным усвоением. Крахмал диссимилируется организмом достаточ­но длительный период и в отличие от моно- и дисахаридов не обеспечивает столь быстрое и выраженное повышение уровня глю­козы в крови. Однако основные пищевые источники крахмальных полисахаридов (хлеб, крупы, макароны, бобовые, картофель) поставляют в организм значительные количества аминокислот, витаминов и минеральных веществ и минимум жира. В то же время сахар не только не содержит незаменимых нутриентов, но и тре­бует для своей метаболизации в организме затрат дефицитных витаминов и других микронутриентов. Большинство сладких кон­дитерских изделий одновременно являются и источниками скры­того жира (торты, пирожные, вафли, печенье сдобное, шоко­лад).

В процессе тепловой обработки (выпечки, отваривания) и при охлаждении может образовываться так называемый резистентный (устойчивый к перевариванию) крахмал, количество которого зависит как от степени тепловой нагрузки, так от содержания в крахмале амилозы. Устойчивые к перевариванию крахмалы содер­жатся и в натуральных продуктах — их максимальное количество найдено в бобовых и картофеле. Вместе с олигосахаридами и не­крахмальными полисахаридами они составляют углеводную груп­пу пищевых волокон.

В последние годы увеличился объем используемых в пищевой промышленности так называемых модифицированных крахмалов. Они отличаются от природных форм хорошей растворимостью в воде (независимо от температуры). Это достигается их предваритель­ной производственной ферментацией с образованием в конечной композиции различных декстринов. Модифицированные крахма­лы используют в виде пищевых добавок для достижения ряда тех­нологических целей: придания продукту заданного внешнего вида


и стабильной формы, достижения необходимой вязкости и одно­родности.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико — с рационом поступает не более 10... 15 г гликогена в составе печени, мяса и рыбы. При созрева­нии мяса гликоген превращается в молочную кислоту.

У человека излишки глюкозы в первую очередь (до метаболиче­ской трансформации в жир) превращаются именно в гликоген — единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г ('/з в печени, остальное количество в мышцах) — это суточный за­пас углеводов, используемый при их глубоком дефиците в пита­нии. Длительный дефицит гликогена в печени ведет к дисфунк­ции гепатоцитов и ее жировой инфильтрации.

Величина потребности в углеводах для человека определяет­ся их ведущей ролью в обеспечении организма энергией и не­желательностью синтеза глюкозы из жиров (а тем более из бел­ков) и находится в прямой зависимости от энергозатрат. Учи­тывая возможные индивидуальные особенности обмена веществ и уровень поступления жира, оптимальный уровень углеводов в питании находится в интервале 55...65 % энергоценности рацио­на, т.е. в среднем составляет 150 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует при­мерно 300...400 г углеводов в сутки.

Потребность человека с энергозатратами 2 800 ккал в углево­дах и их оптимальная групповая сбалансированность может быть в основном обеспечена:

1) ежедневным потреблением:

• 360 г хлеба и хлебобулочных изделий;

• 300 г картофеля;

• 400 г овощей, зелени, бобовых;

• 200 г фруктов, ягод;

• не более 60 г сахара (чем меньше — тем лучше); 2) еженедельным потреблением:

• 175 г круп;

• 140 г макаронных изделий.

Оценку адекватности обеспечения реальной потребности в уг­леводах взрослого человека необходимо проводить с использова­нием индикаторных параметров пищевого статуса: индекса массы тела и уровня гликозилированного гемоглобина А, повышение концентрации которого свидетельствует о длительном чрезмер­ном употреблении Сахаров, в том числе и у здорового человека.

С позиций оценки возможного влияния углеводного компо­нента рациона на параметры пищевого статуса, характеризующие углеводный обмен, целесообразно использовать данные о так на­зываемом гликемическом индексе (ГИ) — процентном показателе,


отражающем разницу в изменении концентрации глюкозы в сы­воротке крови в течение 2 ч после употребления какого-либо про­дукта по сравнению с аналогичным результатом после употребле­ния тест-продукта. В качестве тест-продукта обычно используют глюкозу (50 г) или пшеничный хлеб (порция, содержащая 50 г крахмала).

Гликемический индекс продуктов (табл. 2.12) зависит от мно­гих пищевых факторов:

• химической структуры и формы углеводов, входящих в со­став продукта;

Таблица 2.12

Гликемический индекс некоторых продуктов

Продукт, ингредиент* Тест-продукт — глюкоза Тест-продукт — пшеничный хлеб
Пшеничный хлеб Глюкоза 69 100 100 138
Кукурузные хлопья Рис: белый (полированный)   119 81
коричневый    
с низким содержанием амилозы  
Макаронные изделия Картофель:    
отварной  
пюре  
жареный  
запеченный Фасоль Бананы Апельсины Апельсиновый сок 29 62 40 46 42 83 52 74
Яблоки («Голден») Изюм 39 64  
Курага  
Абрикосы в сиропе Молоко (обезжиренное) Йогурт Мороженое сливочное 34(-) 36 36 91 39 (46) 48 84
Мед, мальтоза Фруктоза Сахароза 105 20 59 104 (±21) 32 87

* Порция, включающая в себя 50 г углеводов.


наличия в пищевом продукте белков, жиров, непереваривае-мых компонентов, органических кислот;

• способа кулинарной, в том числе тепловой, обработки про­дукта.

Сложные углеводы могут иметь ГИ, приближающийся к уров­ню простых углеводов и даже превосходящий его для некоторых моно- и дисахаров. Уровень гликемии после употребления крах-малсодержащих продуктов зависит в том числе от соотношения в крахмале амилозы и амилопектина: скорость переваривания и ус­вояемости амилопектина меньше, чем амилозы.

Информация о величине ГИ продукта имеет значение не толь­ко для больных сахарным диабетом, но и полезна любому потре­бителю с позиций профилактики чрезмерной алиментарной гли­кемии. Данную информацию целесообразно выносить на этикетку продуктов, содержащих углеводы.

Некрахмальные полисахариды. Некрахмальные полисахариды (НПС) — это широко распространенные вещества растительной природы. В их химический состав входят смеси различных полиса­харидов, содержащие пентозы (ксилоза и арабиноза), гексозы (рамноза, манноза, глюкоза, галактоза) и уроновые кислоты. Ряд из них содержатся в клеточных оболочках, играя структурную роль, другие находятся в форме камедей и слизей внутри и на поверх­ности растительных клеток.

Согласно классификации НПС делятся на несколько групп: целлюлоза, гемицеллюлоза, пектины, b-гликаны и гидроколлои­ды (камеди, слизи).

Некрахмальные полисахариды не перевариваются в тонком кишечнике человека в связи с отсутствием соответствующих фер­ментных систем, по этой причине ранее они назывались «балласт­ными веществами», признаваясь лишними компонентами пищи, удаление которых в процессе технологической переработки про­довольственного сырья считалось вполне допустимым. Это оши­бочное мнение наряду с другими чисто технологическими причи­нами способствовало появлению широкого ассортимента рафи­нированных (очищенных от НПС) пищевых продуктов, име­ющих значительно более низкие показатели пищевой ценности. В настоящее время не вызывает сомнений, что НПС играют зна­чительную роль в жизнеобеспечении организма как на функцио­нальном, так и на метаболическом уровнях, что позволяет отнес­ти их к группе незаменимых факторов питания человека.

У животных встречается в виде единственного исключения только одна группа неперевариваемых углеводных полимеров, состоящих из ацетил и рованного гликозамина, — хитин и хито-зан, пищевыми источниками которых является панцирь крабов и лобстеров (может использоваться в качестве пищевого обога­тителя).


Аналогичными свойствами обладает также лигнин — водоне-растворимое соединение неуглеводной (полифенольной) приро­ды, входящее в состав клеточных оболочек многих растений и семян.

Пищевые волокна. Все перечисленные выше НПС, лигнин и хитин в совокупности с олигосахаридами и неперевариваемым крахмалом в настоящее время объединяются в одну общую разно­родную группу пищевых веществ, названных пищевыми волокна­ми (ПВ). Таким образом, пищевые волокна — это съедобные ком­поненты пищи, главным образом растительной природы, устой­чивые к перевариванию и усвоению в тонком кишечнике, но под­вергающиеся полной или частичной ферментации в толстом ки­шечнике.

Хорошими источниками ПВ в питании являются бобовые, зер­новые, орехи, а также фрукты, овощи и ягоды (табл. 2.13). Чем выше степень очистки (рафинирования) продовольственного сы­рья при технологической переработке, тем меньше ПВ (а также и многих микронутриентов) остается в конечном продукте. Этот факт наглядно иллюстрируется на примере продуктов перера­ботки зерна: в пшенице содержится 2,5 г ПВ (на 100 г); в пше­ничной муке, г: обойной — 1,9, 2-го сорта — 0,6, 1-го сорта — 0,2, высшего сорта — 0,1; в хлебе (в зависимости от сорта муки 0,1... 1,7); в овсе — 10,7 г; в овсяной крупе — 2,8, в овсяных хлопьях — 1,3.

Таблица 2.13

Содержание ПВ в некоторых продуктах

Продукт Порция, г Количество ПВ, г
Отруби овсяные   7,7
Фасоль   6,8
Малина   6,8
Артишоки 120 (1 шт.) 6,5
Черника   5,3
Яблоки 140 (1 шт.) 3,7
Манго 200 (1 шт.) 3,7
Крупа гречневая   3,4
Миндаль 30 (23 шт.) 3,3
Апельсины 130 (1 шт.) 3,1
Курага   3,2
Фисташки 30 (47 шт.) 2,9
Тыква   2,9
Бананы 120 (1 шт.) 2,8
Киви 75(1 шт.) 2,6
Картофель 135(1 шт.) 2,4

Окончание табл. 2.1 i.

Продукт Порция, г Количество ПВ, г
Перец сладкий красный 120(1 шт.) 2,4
Арахис 30 (33 шт.) 2,4
Нектарин 135(1 шт.) 2,2
Морковь 70 (1 шт.) 2,2
Перец сладкий зеленый 120 (1 шт.) 2,1 1,9 1,6
Капуста белокочанная  
Черешня 70 (10 шт.)
Томаты 120 (1 шт.) 1,4
«Геркулес»   1,3
Хлеб зерновой 30 (1 кусок) 1,1

Содержание ПВ в различных пищевых продуктах обычно иллю­стрирует сумму всех неперевариваемых компонентов, и для взрос­лого здорового человека необходимости в дифференцировании составных компонентов ПВ нет.

Основные физиологические эффекты ПВ связаны с обеспече­нием нормальной моторики кишечника, поддержания нормаль­ного микробиоценоза кишечника и сорбционными свойствами. Нормальная моторика кишечника обеспечивает оптимальные эва-куаторные свойства желудочно-кишечного тракта, его секретор­ные (ферментативные, желчевыделительные, гормональные) функции, снижает возможность аутоинтоксикации.

В результате частичной или полной ферментации ПВ нормаль­ной микрофлорой толстого отдела кишечника образуются ко-роткоцепочечные жирные кислоты (уксусная, пропионовая, мас­ляная) и газы (углекислый, водород, метан). Все эти продукты ферментации используются для поддержания жизнедеятельно­сти микрофлоры кишечника и участвуют в обмене клеток слизи­стой оболочки толстого кишечника. Жирные кислоты с корот­кой углеводной цепочкой усваиваются клетками слизистой обо­лочки и метаболизируются с выделением необходимой энергии (до 2 ккал из 1 г ПВ). Масляная кислота активно используется клетками слизистой оболочки толстого кишечника и по некото­рым данным играет важную роль в защите эпителия толстого ки­шечника от различных патологических процессов, в том числе и неопластических.

Нормирование ПВ проводится в отношении всей группы входя­щих в них соединений. Для взрослого здорового человека оптималь­ным ежедневным количеством ПВ считается 11... 14 г на 1 000 ккал рациона, что составляет 25... 35 г/сут. Это количество в полном объе­ме может поступить в организм с тем же продуктовым набором, который обеспечивает потребность в углеводах в целом. 62


2.5. Витамины и их значение в питании

Классификация витаминов. Значение витаминов в жизнедеятель­ности организма. Термин «витамины» (от лат. vita — жизнь) явля­ется в настоящее время общеприменимым, хотя далеко не все соединения, включенные в эту группу пищевых веществ, имеют в своем составе аминогруппу.

К витаминам относятся 15 групп химических соединений орга­нической природы, имеющих следующие общие черты:

• они играют известную роль в основных обменных процессах;

• не образуются в организме человека в необходимых количе­ствах и должны поступать с пищей;

• относятся к микронутриентам, т.е. их суточную потреб­ность выражают в микроколичествах (миллиграммах или мик­рограммах);

• имеют клинические и (или) лабораторные признаки гипо-
витаминозных состояний при их недостаточном поступлении с

питанием.

Таким образом, витамины — это группа эссенциальных мик-ронутриентов, участвующих в регуляции и ферментативном обес­печении метаболических процессов, но не имеющих пластиче­ского и энергетического значения. Витамины классифицируют в зависимости от их растворимости в воде или жирах.

К водорастворимым витаминам относятся: аскорбино­вая кислота (С), биофлавоноиды, витамины группы В — тиамин (В,), рибофлавин (В2), пиридоксин (В6), ниацин (РР), фолацин, витамин В,2, пантотеновая кислота, биотин (Н).

Жирорастворимыми являются: витамин А, каротиноиды (провитамины А), а также витамины Е, D, К.

Водорастворимые витамины участвуют в ферментативных кле­точных процессах непосредственно в виде коферментов или регу­лируют динамику процесса за счет переноса функциональных групп или протонов и электронов. Жирорастворимые витамины отвеча­ют за обеспечение нормального функционирования биологиче­ских мембран, реализуя при этом своего рода гормоноподобные свойства. В последние годы активно изучаются возможные меха­низмы участия витаминов в генетической регуляции обменных процессов.

При недостаточном поступлении витаминов с пищей могут развиваться патологические состояния — авитаминозы, напри­мер цинга, пелагра, бери-бери, рахит, и нарушения пищевого статуса — гиповитаминозы, регистрирующиеся по ряду клини­ческих проявлений и главным образом по оценке биомаркеров обеспеченности организма витаминами.

Причинами развития абсолютной или относительной недоста­точности витаминов могут быть:


алиментарный дефицит витаминов, т. е. низкое содержание в рационе их основных пищевых источников;

• повышенная потребность в витаминах;

• нарушение абсорбции и метаболизации (обмена) витаминов.
Алиментарный дефицит витаминов развивается чаще всего при

недостаточном употреблении пищевых продуктов, являющихся их источниками, а также при разрушении витаминов в продукте или блюде в результате нерационального хранения и кулинарной об­работки, наличия в нем антивитаминов (ферментов, разрушающих витамин).

Повышенная потребность в витаминах может быть обусловлена их дополнительным (сверх обычных физиологических потребно­стей) использованием в защитно-адаптационных механизмах при проживании и работе в условиях чужеродной (экологической или производственной) нагрузки, особых климатических условиях, при интенсивной физической и эмоциональной нагрузке (стрессовые условия), избыточном поступлении основных макронутриентов, а также при беременности, лактации и в силу ряда заболеваний.

В ситуации, когда гиповитаминоз развивается на фоне хороше­го алиментарного обеспечения, наиболее частыми причинами этого бывают нарушения абсорбции и метаболизации (обмена) витаминов. В частности, всасыванию витаминов в желудочно-ки­шечном тракте могут мешать антиалиментарные факторы, присут­ствующие в пище: природные сорбенты или витаминконверти-рующие соединения, такие как пищевые волокна, фитиновые соединения.

Снижение абсорбции витаминов может быть обусловлено так­же заболеваниями желудочно-кишечного тракта (гастритами, дуо­денитами, холециститами, панкреатитами), изменяющими фи­зиологические параметры кислотности, секреции, ферментатив­ной активности, проницаемости мембран или сопровождающи­мися патологическими формами эвакуации содержимого желу­дочно-кишечного тракта (рвотой, диареей). При значительной разбалансированности рациона по макронутриентам, усвояемость витаминов может значительно снизиться. Например, резкое сни­жение употребления жира (менее 10% по калорийности рацио­на) тормозит усвояемость жирорастворимой группы витаминов даже при условии их дополнительного поступления. Резко может снижаться усвояемость жирорастворимых витаминов при исполь­зовании некоторых фармакологических средств (например, ста-тинов), блокирующих утилизацию жира.

Нарушение ассимиляции витаминов на транспортном и клеточ­ном уровнях чаще всего наблюдается в результате генетических де­фектов отдельных обменных и биосинтетических процессов.

Аскорбиновая кислота. Витамин С, известный как аскорбино­вая кислота, не синтезируется у человека в отличие от большин-


ства млекопитающих и должен поступать с пищей в необходимых количествах.

Аскорбиновая кислота крайне неустойчива при тепловой об­работке и разрушается практически полностью в течение 2... 3 мин при интенсивном кипении с доступом кислорода — овощи (фрук­ты) в воде или первые блюда при интенсивном нагревании и открытой крышке. Разрушению аскорбиновой кислоты также спо­собствует контакт с металлической посудой или металлическими частями бытовых кухонных приборов. Быстрое замораживание пишевых продуктов не снижает содержания в них витамина С, но его количество в готовой пище будет зависеть от условий дефро-стации и дальнейшей кулинарной обработки.

Устойчивость аскорбиновой кислоты повышается в кислой сре­де — поэтому продукты с низким рН, например цитрусовые соки, долго сохраняют высокие количества витамина С. При хранении яблок, картофеля, капусты и других овощей и фруктов происхо­дит заметное разрушение аскорбиновой кислоты, и через 4... 5 мес хранения (даже в соответствии с регламентом) содержание вита­мина С в этих продуктах снижается на 60... 80 %.

В среднем при расчете реального поступления аскорбиновой кис­лоты с пищей процент ее кулинарных потерь принимается за 50.

Усвояемость и физиологические функции. Аскорбиновая кислота усваивается практически полностью в тонком кишечнике и, цир­кулируя в крови, распределяется в органах и тканях, а избыток выводится с мочой в течение нескольких часов. Потери через ки­шечник и с потом, как правило, незначительны.

В организме аскорбиновая кислота выполняет ряд жизненно важных функций, которые биохимически связаны с ее способ­ностью к окислительно-восстановительным реакциям. Витамин С участвует в синтезе коллагена — основного структурного белка соединительной ткани, являющегося компонентом кровеносных сосудов, костей, сухожилий, фасций и обеспечивающего их функ­циональность и устойчивость. Витамин С играет также важную роль в синтезе нейротрансмиттеров — норадреналина, серото-нина, а также карнитина, желчных кислот из холестерина (воз­можный механизм гипохолестеринемического действия), в гид-роксилировании кортикостероидных гормонов (особенно актив­но при стрессе).

Аскорбиновая кислота — это антиоксидант, обеспечивающий прямую защиту белков, липидов, ДНК и РНК от повреждающего действия свободных радикалов и перекисей. Он поддерживает оп­тимальный клеточный уровень восстановленного глутатиона и защищает от окисления SH-группы ферментов, а также восста­навливает потерявший антиоксидантную активность токоферол.

Витамин С оказывает существенное влияние на обмен ряда микронутриентов, в частности на восстановление трехвалентного


железа в усвояемую двухвалентную форму, повышая биодоступ­ность алиментарного железа из растительных источников. Показа­на синергическая связь между обменом аскорбиновой кислоты и тиамином, рибофлавином, ниацином, фолиевой и пантотеновой кислотами, биофлавоноидами.

В последние годы получены многочисленные подтверждения участия витамина С в поддержании нормальной иммунореактив-ности организма на клеточном и гуморальном уровнях.

Основные пищевые источники и возможность обеспечения орга­низма. Аскорбиновая кислота поступает в организм человека глав­ным образом в составе растительных компонентов (табл. 2.14). При их употреблении на уровне рекомендуемых количеств для взрос­лого здорового человека содержание витамина С должно соответ­ствовать норме физиологической потребности или превосходить ее [в табл. 2.14 приведен ежедневный набор продуктов, обеспечи­вающий физиологическую норму витамина С (на выбор) у чело­века с энергозатратами 2 800 ккал]. Однако чаще всего этого не происходит, и недостаток аскорбиновой кислоты — самый рас-

Таблица 2.14 Пищевые источники аскорбиновой кислоты

  Количество  
Продукт витамина С в 100 г свежего продукта, мг Ежедневный набор продуктов
Шиповник свежий (сухой) 500... 650 (1 100) 300...400 мл отвара шиповника
Перец сладкий, смородина черная, облепиха, петрушка, укроп, капуста брюс- 100... 250 1) 2 шт. сладкого перца 2) 150 г цветной капусты 3) 50 г черной сморо­ дины
сельская и цветная,    
стручковый горох    
Картофель, капуста белокочанная (в том числе квашеная), помидоры, яблоки, ананасы, киви, клуб­ника, апельсины, 10... 100 1) 2...3 киви 2) 1 большой апельсин 3) 150 г клубники 4) 1 стакан (250 мл) апельсинового сока 5) 150 г картофеля
мандарины, крыжов­ник, лимоны, соки (цитрусовые)   (отварного) + 100 г капу­сты белокочанной све­жей + 30 г зелени пет­рушки + 100 г помидо­ров грунтовых (пример гарнира)

пространенный витаминный дефицит в питании населения раз­витых стран. Это связано с двумя основными проблемами: резким снижением употребления с пищей общего количества раститель­ных продуктов; высокой степенью технологической переработки продовольственного сырья, ведущей к значительным потерям витамина С. Последнее связано не только с прямым разрушением витамина под действием технологической нагрузки, но и диффе­ренцированным использованием различных частей растения. Со­держание аскорбиновой кислоты в них неодинаково: она накап­ливается в растениях в периферических участках (кожуре, наруж­ных слоях и листьях) больше, чем в центральных частях растения (мякоти, стебле, черешке).

В некоторых растительных продуктах содержится фермент ас-корбатоксидаза, окисляющий витамин С до дикетогулановой кис­лоты (малоактивная витаминная форма) и являющийся антивита­мином (антиалиментарным фактором). Аскорбатоксидаза содержится в значимых количествах в огурцах, кабачках. При этом высокотеп­ловая обработка, например кабачков, инактивирует этот фермент.

Реальная потребность в аскорбиновой кислоте в современных условиях жизни может значительно превосходить уровень физио­логических потребностей из-за дополнительного расхода в защит­но-адаптационных процессах, что способствует формированию относительного дефицита.

Большое значение в обеспечении населения аскорбиновой кис­лотой имеют витаминизированные продукты и блюда. Ее можно добавлять во фруктовые, ягодные и овощные соки, жидкие мо­лочные продукты и различные консервы при их производстве. Уз­нать о факте обогащения и количестве добавленного витамина потребитель может, прочитав этикетку продукта. Обязательной считается практика С-витаминизации готовых третьих и первых блюд (в количестве возрастной суточной потребности) при орга­низации питания в детских учреждениях, больницах, санатори­ях, профилакториях.

Нормы физиологической потребности и биомаркеры пищевого ста­туса. Для взрослого здорового человека, проживающего в обыч­ных условиях, суточная потребность в витамине С составляет в зависимости от энергозатрат 70... 100 мг и может быть индивиду­ально рассчитана как 25 мг на 1 000 ккал рациона. Дополнитель­ные количества аскорбиновой кислоты необходимы в периоды беременности, лактации, проживания в холодных климатических Условиях, работы на производствах с вредными условиями труда, а также при дополнительной чужеродной нагрузке, вызванной неблагоприятными условиями среды обитания (экологический фактор) и вредными привычками, например курением (поведен­ческий фактор). При курении дополнительная потребность в ви­тамине С может достигать 50... 100 % физиологической нормы.


Биомаркерами обеспеченности аскорбиновой кислотой орга­низма являются концентрации собственно витамина в моче и крови. С мочой ежесуточно должно выделяться 20...30 мг аскорбиновой кислоты, при этом в плазме крови ее концентрация должна быть не ниже 17 мкмоль/л. Аскорбиновую кислоту в моче определяют методом цветной визуальной калориметрии — титрованием под­готовленной пробы мочи с реактивом Тильманса.

Существуют также многочисленные оценочные пробы, харак­теризующие внешние проявления обеспеченности организма ви­тамином С: пробы жгута, щипка, проба Нестерова. Смысл их про­ведения сводится к установлению степени устойчивости мелких сосудов кожи к дозированному внешнему воздействию. Анализ результатов любых методов оценки резистентности кожных ка­пилляров позволяет характеризовать обеспеченность организма не только витамином С, но и синергически действующими биофла-воноидами.

Проявления недостаточности и избытка. Полное отсутствие ви­тамина С в пище может привести к развитию авитаминоза С — цинги (скорбута). Это состояние (редко встречающееся в развитых странах) описано много столетий назад и напрямую связано с питанием только животными продуктами и продуктами перера­ботки зерна при полном исключении из рациона любой другой растительной пищи, например при длительных путешествиях (в Средние века) или нахождении на монодиетах. Цинга при от­сутствии лечения (ежедневного приема аскорбиновой кислоты) приводит к смерти. Симптомами цинги являются: упадок сил, кож­ные (особенно заметные) и полостные (в брюшную и плевраль­ную полость, суставы) кровоизлияния и кровотечения (из носа, рта), выпадение волос и зубов, боли и отечность суставов.

Для профилактики цинги достаточно ежедневно получать не менее 10 мг аскорбиновой кислоты. Этого количества, однако, не хватит для предотвращения гиповитаминозных состояний, нали­чие которых может быть установлено при опросе и осмотре чело­века и оценке биомаркеров алиментарной обеспеченности вита­мином С.

О дефиците аскорбиновой кислоты и биофлавоноидов будет свидетельствовать факт кровоточивости десен при чистке зубов. При этом необходимо исключить другие возможные причины этой симптоматики, такие как заболевания десен, неправильный под­бор зубной щетки (жесткая вместо мягкой) и т.п.

При осмотре клиническими признаками гиповитаминоза бу­дут являться: десны набухшие и отечные (иногда синюшнего от­тенка), себорея лица, фолликулярный гиперкератоз («гусиная кожа») на ягодицах, икрах, бедрах, разгибательных поверхностях рук (в области воронок волосяных фолликулов происходит уси­ленное ороговение эпителия и образуются возвышающиеся над


поверхностью кожи узелки). Фолликулярный гиперкератоз явля-тся результатом нарушения проницаемости капилляров волося­ных фолликулов и в выраженных случаях может сопровождаться небольшими точечными кровоизлияниями (геморрагиями), ко­торые придают узелкам сине-багровый цвет. При этом ороговев­ший эпителий вокруг волосяных фолликул легко соскабливается, и под ним обнажаются небольшие папулы красного цвета.

Признаками гиповитаминоза С служат следующие параметры биомаркеров: концентрация аскорбиновой кислоты в плазме кро­ви менее 17 мкмоль/л; в суточной моче менее 20 мг (менее 10 мг — глубокий дефицит).

Гипервитаминоз С не описан. При этом дополнительный при­ем аскорбиновой кислоты, количественно превышающий норму физиологической потребности во много раз (более 10 норм физио­логической потребности), может привести к развитию следующих признаков и побочных эффектов: аллергические реакции; нару­шение функции инсулярного аппарата; оксалатурия, метаболи­ческие нарушения, связанные с формированием уровня «привыч­ного» выделения. Последняя проблема связана с установленным продолжением выделения больших количеств аскорбиновой кис­лоты с мочой в течение еще 10... 14 дней после отмены дополни­тельного приема больших доз витамина С, клинически описан­ная как обратная цинга (rebound scurvy). В этом случае может очень быстро формироваться клиническая картина глубокого дефицита витамина С из-за высоких потерь витамина с мочой.

Избытка витамина С за счет пищевых продуктов у здорового человека быть не может.

Биофлавоноиды. Биофлавоноиды, или вещества с Р-витамин-ной активностью, представляют собой соединения полифеноль-ной природы, синтезирующиеся только в растениях. Именно их присутствие создает многоцветье (все цвета радуги) растительной группы продуктов.

В группу биофлавоноидов входят около 5 000 различных соеди­нений с аналогичной структурой и биологической активностью (табл. 2.15). По своей химической структуре биофлавоноиды со­стоят из двух фенольных колец, соединенных кислородсодержа­щим углеродным мостиком. При этом растительным полифено­лам всех групп присущи одни и те же биологические эффекты, хотя и проявляющиеся с различной интенсивностью.

Усвояемость и физиологические функции. Биофлавоноиды хоро­шо усваиваются и быстро трансформируются в стенках и слизи­стой кишечника. В силу этого концентрации в крови собственно биофлавоноидов крайне незначительны.

Физиологическое значение биофлавоноидов связано с их регу-ляторной функцией в организме. Биофлавоноиды участвуют в про­цессах клеточной регуляции за счет:





Таблица 2.15 Классификация биофлавоноидов и их состав

Подгруппа Соединение Пищевой источник
Флавонолы Флавоны Флавононы Флавантриолы (катехины и галлаты) Антоцианидины Кверцетин, кемпферол, мирецитин, рутин (гликозид) Лютеолин, апегинин Гесперидин, нарингин, эриодиктиол Эпикатехин, галлокате-хин, эпигаллокатехин, эпикатехин галат Цианидин, дельфинидин, мальвидин, пеонидин, петунидин Лук репчатый, клюква, яблоки Лимоны, шпинат Цитрусовые Чай, яблоки, абри­косы, черника, виноград, малина, шоколад Голубика, черешня, малина  

• субстратной поддержки синтеза или активизации ряда гор­монов и медиаторов фенольной природы;

• обратимого ингибирования клеточных металлоферментов;

• антиоксидантной защиты;

• участия во второй фазе трансформации ксенобиотиков;

• прямого и опосредованного моделирования экспрессии генов.

Поступая с пищей в организм, биофлавоноиды обеспечива­ют ему возможность субстратной поддержки клеточной регуля­ции, не оказывая при этом прямого (обязательного) биологи­ческого действия, — в действии растительных полифенолов в отличие от их животных аналогов не наблюдается доза-зависи­мого эффекта.

Многие биологически активные соединения (гормоны и меди­аторы) имеют в своей структурной основе шестиуглеродные коль­ца: адреналин, серотонин, дофамин, триптамин, тирамин и от­носятся к животным полифенолам. Они синтезируются в организ­ме, в частности, из аминокислот триптофана и тирозина. При этом механизм их прямого синтеза из растительных фенолов на ферментативном уровне не показан, но он признается возмож­ным в качестве запасного метаболического пути.

Биофлавоноиды способны обратимо ингибировать металло-ферменты, особенно те, которые содержат в качестве кофер-ментов медь и железо. К ним относятся большинство оксидаз, что в интегральном аспекте проявляется в виде снижения ин­тенсивности окислительных процессов, а следовательно, умень­шения потребления клеткой кислорода. Это, в свою очередь,


способствует предотвращению клеточной гипоксии и развитию повреждений функциональных и структурных белков и нуклеи­новых кислот.

Аскорбатоксидаза — медьсодержащий фермент, инактиви-руюший аскорбиновую кислоту, может ингибироваться биофла-воноидами, что сохраняет запасы аскорбиновой кислоты в клет­ке. Аналогично может выводиться из каталитических реакций гиалуронидаза — фермент, принимающий участие в трансфор­мации структурного коллагена стенок капилляров и мелких со­судов и снижающий их прочность. Именно с этим механизмом связано защитное действие биофлавоноидов в отношении ус­тойчивости сосудистых стенок, реализуемое совместно с аскор­биновой кислотой, которая, напротив, участвует в синтезе кол­лагена. Таким образом, увеличение проницаемости сосудистой стенки (регистрируемое, например, в пробе Нестерова), как правило, связано с комплексным дефицитом биофлавоноидов и витамина С в питании, так как они имеют одинаковые пище­вые источники.

Синергизм биологического действия биофлавоноидов и аскор­биновой кислоты проявляется также в работе неферментативного звена клеточной антиоксидантной системы.

Вторая фаза трансформации ксенобиотиков связана с актив­ными процессами элиминации опасных соединений из организма. Биофлавоноиды обеспечивают повышение активности фермен­тов второй фазы за счет опосредованной экспрессии соответству­ющих генов.

Биофлавоноиды способны непосредственно регулировать транс­крипционные процессы на уровне генов. Например, доказано их участие в блокировке транскрипционного фактора (специфиче­ского белка — ядерного фактора к-В) в результате прямого инги­бирования процесса активизации (реакции фосфорилирования) этого фактора, тормозя тем самым экспрессию белков активной фазы воспаления.

Способность к конъюгационным реакциям у биофлавоноидов может проявляться как в виде их участия в снижении степени усвоения ксенобиотиков в желудочно-кишечном тракте (радио­нуклидов, тяжелых металлов), так и в замедлении абсорбции не­органического железа. Последнее может иметь значение при упо­треблении большого количества крепкого черного чая, содержа­щего танино-катехиновый комплекс с высоким потенциалом этого Действия.

Нормы физиологической потребности. Для взрослого здорового человека, проживающего в обычных условиях, суточная потреб­ность в биофлавоноидах составляет 50...70 мг.

Основные пищевые источники и возможность обеспечения орга­низма. Биофлавоноиды широко представлены в растительных пи-


щевых продуктах, включаемых в разнообразный традиционный рацион. Их поступление в организм резко сокращается при ред­ком использовании в питании овощей, фруктов, ягод, цитрусо­вых, зелени, соков. Животное продовольственное сырье и про­дукты переработки зерновых не содержат биофлавоноидов. Оцен­ка обеспеченности биофлавоноидами проводится главным обра­зом при анализе фактического питания (наличия в рационе их основных источников).

Витамин В1. Тиамин, или витамин Bl5 представляет собой во­дорастворимый комплекс, состоящий из свободного тиамина или его фосфорилируемых форм: тиамина монофосфата, дифосфата или трифосфата.

Усвояемость и физиологические функции. Витамин В,, поступа­ющий с пищей, усваивается в тонком кишечнике. Микроорганиз­мы, населяющие толстый кишечник человека, способны синте­зировать небольшое количество тиамина, который используется ими для своих нужд и может частично усваиваться организмом.

Снизить усвояемость тиамина могут, во-первых, антивитамин — фермент тиаминаза, содержащийся в термически плохо обрабо­танной речной рыбе и некоторых моллюсках, а также съедобных растениях семейства папоротниковых: во-вторых, высокие ко­личества ежедневного употребления чая и кофе (даже без кофе­ина), компоненты которых относятся к антитиаминовым фак­торам.

Тиамин дифосфат (ТДФ) является основной биологически активной коферментной формой витамина В,. Его синтез из тиа­мина происходит в печени с помощью фермента тиаминпиро-фосфокиназы с использованием энергии АТФ и при обязатель­ном участии магния.

Эта форма тиамина включается в состав небольшого количе­ства очень важных ферментов (в частности, митохондриальных дегидрогеназ), которые обеспечивают декарбоксилирование пи-рувата, а-кетоглутарата и некоторых аминокислот в форму аце-тилкоэнзима А и сукцинилкоэнзима А на ключевом метаболиче­ском пути образования энергии при диссимиляции макронутри-ентов. Данный дегидрогеназный комплекс нуждается также в ни-ацине [в составе никотинамиддинуклеотидфосфата (НАДФ)], ри­бофлавине [в составе флавинадениндинуклеотида (ФАД)] и липо-евой кислоте.

Вторая важная группа ферментов, в которых коферментную роль играет ТДФ, относится к транскетолазам пентозафосфатно-го пути, обеспечивающим синтез макроэргических рибонуклеоти-дов [АТФ и гуанинтрифосфата (ГТФ)], никотинамидадениндинук-леотидфосфата восстановленного (НАДФН), нуклеиновых кислот (ДНК и РНК). В силу того, что снижение активности транскетолаз наблюдается только при дефиците витамина В,, определение их


активности в эритроцитах является биомаркерным показателем пищевого статуса.

Тиамин трифосфат играет также неферментативную роль в нерв­ных и мышечных клетках. Установлено, что он активизирует ион­ные каналы в биомембранах, регулируя тем самым движение на­трия и калия, изменение градиента которых на мембранной по­верхности обеспечивает проведение нервного импульса и произ­вольного мышечного сокращения. Глубокий дисбаланс витамина В1, таким образом, может привести к проявлениям в виде невро­логической симптоматики.

Основные пищевые источники и возможность обеспечения орга­низма. Тиамин поступает в организм главным образом с расти­тельными продуктами (табл. 2.16): зерновыми, бобовыми, семе­нами, орехами (в таблице приведен ежедневный набор продук­тов, обеспечивающий физиологическую норму витамина В1 у че­ловека с энергозатратами 2 800 ккал). Много тиамина также в дрож­жах и свинине. Другие животные продукты (молоко, яйца) и боль­шинство овощей, фруктов и ягод содержат минимальные количе­ства тиамина.

Тиамин теряется при высокой очистке муки и крупы, поэтому эти продукты рекомендуется обогащать витамином как минимум до уровня его содержания в сырьевом источнике.

Таблица 2.16 Пищевые источники тиамина

Продукт Количество витамина В1| (тиамина) в 100 г продукта, мг Ежедневный набор продуктов
Семена подсолнечника, кедровые орехи, фисташ­ки, бразильский орех, дрожжи 0,7... 1,9 30 г семян подсолнечника (или орехов) + 360 г хлеба из муки 2-го сорта + 2 сто­ловые ложки «Геркулеса» + + 150 г свинины + 100 г рыбы (лосось) + 300 г кар­тофеля отварного + 200 г комбинированного гарни­ра (капуста цветная, зеле­ный горошек, фасоль стручковая)
Миндаль, кешью, хлебо­булочные изделия (осо­бенно из муки грубого помола), крупы (греч­невая, пшенная, овся­ная), свинина, рыба (лосо­севые, хек), печень го­вяжья, картофель, капуста Цветная, зеленый горо­шек, фасоль стручковая, соевые продукты, авокадо 0,1...0,6

Недостаточность витамина В| в питании может возникать по следующим причинам:

• из-за его низкого поступления с пищей (абсолютный дефи­цит);

• в результате повышенной потребности (относительный де­фицит), которая возникает при избыточном употреблении угле­водов, алкоголя, а также при использовании диуретиков и у боль­ных малярией и ВИЧ-инфекцией;

• в случае пониженной усвояемости в результате заболеваний кишечника (энтериты, колиты).

В среднем при расчете реального поступления тиамина с пи­щей количество его кулинарных потерь принимается за 25 %.

Нормы физиологической потребности и биомаркеры пищевого ста­туса. Потребность человека в тиамине зависит от пола, возраста, энергозатрат. Физиологическим уровнем поступления В, считается ежесуточное употребление 1,1...2,1 мг, что в пересчете на 1000 ккал составляет 0,6 мг.

Клиническая диагностика изолированного дефицита В, край­не затруднена в силу отсутствия специфических проявлений — обычно отмечается симптомокомплекс, характерный для астени­ческого синдрома. Ведущими показателями обеспеченности орга­низма витамином В] считаются биомаркеры пищевого статуса, в частности активность транскетолазы в эритроцитах (ТДФ-эф­фект). При этом изучается степень активизации транскетолазы эритроцитов при добавлении in vitro ее кофермента — ТДФ. В нор­ме коэффициент активизации не превышает 15 % — ТДФ-эффект находится в интервале 1,0... 1,15. Может также использоваться по­казатель концентрации пирувата в крови (норма 5... 10 мг/л) и моче (15...30 мг/сут).

Проявления недостаточности и избытка. Авитаминоз Bj назы­вается бери-бери и описан в Китае еще в 2600 г. до н.э. При его возникновении поражаются сердечно-сосудистая, нервная, мы­шечная системы и желудочно-кишечный тракт. Поражения сер­дечно-сосудистой системы проявляются прогрессирующей сердеч­ной недостаточностью в виде тахикардии, одышки, отеков. Про­явления со стороны желудочно-кишечного тракта включают в себя снижение аппетита, боли в животе, тошноту, запоры. Поражение нервной системы имеет общие характеристики периферической нейропатии: абнормальные рефлексы, измененную чувствительность и мышечную слабость. Нарушения в работе центральной нервной системы проявляются в виде синдрома Вернике — Корсакова, ко­торый также наблюдается у лиц, страдающих алкоголизмом или имеющих дефицит питания на фоне рака желудка или вирусного иммунодефицита человека. Дефицит тиамина часто приводит к раз­витию окислительного стресса в клетках нервной системы, что усу­губляет проявления неврологической симптоматики.


Биохимическими критериями дефицита являются: ТДФ-эффект в эритроцитах более 1,15 (более 1,25 — глубокий дефицит) и по­вышение концентрации пирувата в крови и моче. Гипервитаминоз Bj не описан.

Витамин В2. Рибофлавин, или витамин В2, относится к водо­растворимым витаминам.

Усвояемость и физиологические функции. Рибофлавин эффек­тивно абсорбируется в тонком кишечнике и выполняет в орга­низме коферментную функцию в составе флавинов: флавинаде-ниндинуклеотида (ФАД) и флавинмононуклеотида (ФМН), ко­торые, в свою очередь, участвуют в окислительных реакциях це­лого ряда метаболических путей. Они участвуют в обмене углево­дов, жиров и белков. Флавинадениндинуклеотид входит в состав цепи переноса электронов (дыхательной цепи), ведущей к обра­зованию энергии. В комплексе с цитохромом Р-450 флавины уча­ствуют в метаболизме ксенобиотиков.

Флавинадениндинуклеотид является коферментом антиокси-дантной энзимной группы. Он входит в состав глутатионредукта-зы, обеспечивающей восстановление окисленной формы глута-тиона — основного клеточного защитно-адаптационного субстра­та, повышая тем самым антиоксидантные возможности клетки по инактивации перекисных соединений.

Другим ФАД-содержащим ферментом является ксантинокси-даза, катализирующая окисление гипоксантина и ксантина до мочевой кислоты. Рибофлавин участвует в обмене ряда других ви­таминов — В6, ниацина, фолиевой кислоты, а также железа.

Основные пищевые источники и возможность обеспечения орга­низма. Основными источниками рибофлавина в питании (табл. 2.17) являются молочные продукты, мясопродукты, яйца и гречневая

Таблица 2.17 Основные пищевые источники рибофлавина

Продукт Количество витамина В2 (рибофла­вина) в 100 г про­дукта, мг Ежедневный набор продуктов
Печень говяжья, дрожжи 0,7... 2 500 мл молочных продук­тов (йогурты + стакан кефира) +20 г (1 ломтик) сыра или 100 г творога + + 170 г мяса (птицы) + + 360 г хлеба + 100 г мака­ронного или крупяного гарнира
Сыр, творог, яйца 0,3...0,5
Молоко и жидкие молочные продукты, крупа гречневая и овсяная, рыба, мясо, птица 0,1...0,2




крупа. Зерновые, овощи и фрукты бедны этим витамином (в таб­лице приведен ежедневный набор продуктов, обеспечивающий физиологическую норму витамина В2 у человека с энергозатрата­ми 2 800 ккал).

Рибофлавин достаточно устойчив при хранении и переработ­ке: кулинарные потери составляют в среднем 25 %. При этом сол­нечный свет способен значительно (до 50...70%) разрушить ви­тамин В2, в частности в молоке.

Нормы физиологической потребности и биомаркеры пищевого ста­туса. Потребность человека в рибофлавине зависит от пола, воз­раста и энергозатрат. Физиологическим уровнем поступления В2 считается ежесуточное употребление 1,3...2,4 мг, что в пересчете на 1 000 ккал составляет около 0,6 мг.

Объективными показателями обеспеченности организма вита­мином В2 являются биомаркеры пищевого статуса, в частности активность глутатионредуктазы в эритроцитах — ФАД-эффект. При этом изучается степень активизации глутатионредуктазы эритро­цитов при добавлении in vitro ее кофермента — ФАД. В норме коэффициент активизации не превышает 30 % — ФАД-эффект находится в интервале 1,0... 1,3. Может также использоваться по­казатель концентрации рибофлавина в моче (в норме не менее 300 мкг/сут).

Проявления недостаточности и избытка. Гиповитаминоз В2 на­блюдается главным образом при глубоком дефиците поступления с рационом молока и молочных продуктов, а также яиц.

Клиническая диагностика недостатка В2 связана с обнаруже­нием триады симптомов: цилиарной инъекции, ангулярного сто­матита и хейлоза. При этом также отмечается себорейный дерма­тит и может наблюдаться воспаление и гиперемия языка (после­днее, как правило, при комбинированном дефиците В2, В6 и РР).

При глубоком дефиците рибофлавина также может регистри­роваться нормохромная нормоцитарная анемия.

Биохимическими критериями дефицита являются ФАД-эффект в эритроцитах более 1,3 (более 1,8 — глубокий дефицит) и сниже­ние концентрации рибофлавина в моче.

Гипервитаминоз В2 не описан.

Витамин В6. Пиридоксин, или витамин В6, относится к водо­растворимым витаминам и представлен в виде шести химических соединений, из которых пиридоксаль-5-фосфат (ПАЛФ) являет­ся активной коферментной формой, наиболее важной для мета­болизма человека.

Усвояемость и физиологические функции. Витамин В6 эффективно (до 75 %) абсорбируется в тонком кишечнике. Пиридоксаль-5-фос-фат играет определяющую роль в функционировании около 100 ферментов, катализирующих жизненно важные химические реакции на путях метаболизма, главным образом белкового обме-


на. Например, ПАЛФ участвует в переаминировании и декарбо-ксилировании аминокислот, глюконеогенезе из аминокислот, обеспечивает высвобождение глюкозы из гликогена, синтез ниа-цина из триптофана, синтез арахидоновой кислоты из линолевой. Он участвует в синтезе нейротрансмиттеров, таких как серотонин, дофамин, норадреналин и у-аминомасляной кислоты. Показана зна­чительная роль пиридоксина в синтезе гема, нуклеиновых кислот.

Витамин В6 способен снижать эффекты половых гормонов за счет блокировки их клеточных рецепторов.

Основные пищевые источники и возможность обеспечения орга­низма. Основными источниками витамина В6 в питании являются (табл. 2.18): мясопродукты, рыба, картофель, овощи, зерновые, при условии их широкого использования в рационе (в таблице приведен ежедневный набор продуктов, обеспечивающий физио­логическую норму витамина В6 у человека с энергозатратами 2 800 ккал). Реально удовлетворить потребность в пиридоксине можно за счет использования обогащенной муки в процессе про­изводства хлебобулочных и макаронных изделий.

Молочные продукты и большинство фруктов и ягод бедны этим

витамином.

Усвояемость В6 могут снижать некоторые лекарственные сред­ства, в частности противотуберкулезные (изониазид и циклосе-рин) и антипаркинсонические препараты (/-допа).

Пиридоксин достаточно устойчив при хранении и переработ­ке: кулинарные потери составляют в среднем 25 %.

Нормы физиологической потребности и биомаркеры пищевого ста­туса. Потребность человека в пиридоксине зависит от пола, воз­раста и энергозатрат. Физиологическим уровнем поступления В6

Таблица 2.18

Основные пищевые источники пиридоксина





Дата публикования: 2015-09-17; Прочитано: 713 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.049 с)...