Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теоретическая часть. 3.1. Основные понятия и термины



3.1. Основные понятия и термины

В работе используются следующие понятия и тер­мины:

суспензия, фильтрование, фильтр, фильтровальная перегородка, осадок, фильтрат, схема устройства и принцип работы простейшего фильтра; способ создания разности давления при фильтро­вании; материалы, применяющиеся для изготовления фильтровальных перегородок; фильтрование с образованием слоя осадка, сжи­маемые и несжимаемые осадки, фильтрование с за­купориванием пор, промежуточное фильтрование, фильтрование с применением вспомогательных ве­ществ; скорость фильтрования, фильтрование при посто­янной разности давления, при постоянной скорости и при переменных значениях давления и скорости; удельный объем фильтрата, сопротивление осадка и перегородки, удельное сопротивление осадка, кон­станты фильтрования.

Перед выполнением лабораторной работы необхо­димо уяснить содержание этих терминов и понятий по материалу, изложенному в на­стоящих методических указаниях.

3.2. Понятия суспензии и фильтрования

Суспензии – неоднородные системы, состоящие из жидкости и взвешенных в ней твердых частиц. В зависимости от размеров твердых частиц (в мкм) суспензии условно подразделяют на грубые (более 100), тонкие (0,5-100) и мути (0,1-0,5).

Фильтрованием называют процесс разделения суспензий с использованием пористых перегородок, которые задерживают твердую фазу суспензии и пропускают ее жидкую фазу.

Разделение суспензии, состоящей из жидкости и взвешенных в ней твердых частиц, производят при помощи фильтра (рис. 2.1), который в простейшем виде является сосудом, разделенным на две части фильтровальной перегородкой. Суспензию помещают в одну часть этого сосуда так, чтобы она соприкасалась с фильтровальной перегородкой. В разделенных частях сосуда создают разность давлений, под действием которой жидкость проходит через поры фильтровальной перегородки, причем твердые частицы задерживаются на ее поверхности. Таким образом, суспензия разделяется на чистый фильтрат и влажный осадок. Этот процесс разделения суспензии называют фильтрованием с образованием осадка. Иногда твердые частицы проникают в поры фильтровальной перегородки и задерживаются там, не образуя осадка. Такой процесс называют фильтрованием с закупориванием пор. Возможен также промежуточный вид фильтрования, когда твердые частицы проникают в поры фильтровальной перегородки и образуют на ней слой осадка.

3.3. Процесс фильтрования

Разность давлений по обе стороны фильтровальной перегородки создают разными способами, в результате чего осуществляют различные процессы фильтрования.

Если пространство над суспензией сообщают с источником сжатого газа (обычно воздуха) или пространство под фильтровальной перегородкой присоединяют к источнику вакуума, то происходит процесс фильтрования при постоянной разности давлений, поскольку давление в ресиверах поддерживается постоянным. При этом скорость процесса уменьшается в связи с увеличением сопротивления слоя осадка возрастающей толщины. Аналогичный процесс фильтрования, встречающийся в производственных условиях относительно редко, происходит под действием разности давлений, обусловленной гидростатическим давлением слоя суспензии постоянной высоты, находящейся над фильтровальной перегородкой.

Если суспензию подают на фильтр поршневым насосом, производительность которого при данном числе оборотов электродвигателя постоянна, то осуществляется процесс фильтрования при постоянной скорости; при этом разность давлений увеличивается вследствие уже упоминавшегося увеличения сопротивления слоя осадка возрастающей толщины.

Если суспензию транспортируют на фильтр центробежным насосом, производительность которого при данном числе оборотов электродвигателя уменьшается при возрастании сопротивления осадка, что обусловливает повышение разности давлений, то производится процесс фильтрования при переменных разности давлений и скорости.

Наиболее желательно фильтрование с образованием осадка, когда закупоривания пор фильтровальной перегородки твердыми частицами с соответствующим увеличением ее сопротивления почти не происходит. Такой вид фильтрования наблюдается при достаточно высокой концентрации твердой фазы в суспензии, причем эту концентрацию условно можно принять более 1 объемн. %. При указанной концентрации над входами в поры фильтровальной перегородки быстро образуются сводики из твердых частиц, пропускающие жидкую фазу суспензии, но задерживающие другие твердые частицы.

Для предотвращения закупоривания пор фильтровальной перегородки при разделении суспензии с относительно небольшой концентрацией твердой фазы, например в пределах 0,1-1 объемн. %, такую суспензию перед разделением на фильтре целесообразно сгустить в отстойниках.

Повышение концентрации твердой фазы осуществляют в ряде случаев также в фильтрах-сгустителях, из которых твердая фаза удаляется не в виде влажного осадка, а в виде сгущенной суспензии.

Наименее желательно фильтрование с закупориванием пор фильтровальной перегородки, так как регенерация ее в данном случае сильно осложняется, а иногда становится невозможной вследствие трудности извлечения твердых частиц из пор. Такой вид фильтрования называют также осветлением, причем ориентировочно можно принять, что оно происходит при концентрации твердых частиц в суспензии менее 0,1 оъемн. %.

При разделении суспензий с небольшой концентрацией тонкодисперсной твердой фазы часто применяют фильтровальные вспомогательные вещества, препятствующие прониканию твердых частиц в поры фильтровальной перегородки. В качестве вспомогательных веществ, представляющих собой тонкодисперсные или тонковолокнистые материалы, используют диатомит, перлит, асбест, целлюлозу, активированный уголь, древесную муку.

Для получения вспомогательного вещества природные диатомит и перлит подвергаются особой обработке, в частности нагреванию, измельчению и классификации.

Вспомогательные вещества наносят предварительно на фильтровальную перегородку в виде слоя толщиной не более 50 мм или в количестве около 1% веса суспензии добавляют к ней перед разделением на фильтре.

Слой вспомогательного вещества наносят на фильтровальную перегородку в результате разделения на фильтре суспензии этого вещества в жидкости, например воде или заранее полученном фильтрате. Если слой вспомогательного вещества толщиной 50 мм нанесен на фильтровальную перегородку вращающегося барабанного фильтра непрерывного действия, то внешние части слоя толщиной примерно 0,1 мм непрерывно срезают ножевым устройством, которые постепенно с очень небольшой скоростью приближается к фильтровальной перегородке. Вследствие этого суспензия все время соприкасается со свежей поверхностью слоя вспомогательного вещества.

При добавлении вспомогательного вещества к разделяемой суспензии концентрация твердых частиц в ней увеличивается, что благоприятствует образованию сводиков над входами в поры фильтровальной перегородки и предотвращает, таким образом, закупоривание этих пор.

Активированный уголь, кроме задерживающей способности по отношению к твердым частицам, обладает и адсорбционным действием; он адсорбирует растворенные в жидкости вещества, например вещества, окрашивающие жидкость.

Процесс фильтрования часто сопровождается стесненным или свободным осаждением твердых частиц суспензии под действием силы тяжести. При этом направления могут совпадать, быть противоположными или перпендикулярными в зависимости от горизонтального или вертикального положения фильтровальной перегородки, а также нахождения суспензии над перегородкой или под ней. Взаимные направления действия силы тяжести и движения фильтрата с соответствующим распределением слоев осадка, суспензии, фильтрата и чистой жидкости схематично показаны на рис. 2.2.

Осаждение твердых частиц усложняет процесс фильтрования и влияет на его закономерности, причем это влияние различно при разных направлениях действия силы тяжести и движения фильтрата. Так, если суспензия находится над фильтровальной перегородкой (рис. 2.2, a), осаждение твердых частиц приводит к более быстрому образованию осадка с получением чистой жидкости, которая может быть удалена из фильтрата декантацией. Если суспензия находится под фильтровальной перегородкой (рис. 2.2, б), осаждение твердых частиц будет препятствовать образованию осадка, что вызовет необходимость в перемешивании суспензии для поддержания ее однородности.

Осадки, получаемые на фильтровальной перегородке при разделении суспензий, подразделяют на несжимаемые и сжимаемые. Под несжимаемыми понимают такие осадки, в которых пористость, т.е отношение объема пор к объему осадка, не уменьшается при увеличении разности давлений. Пористость сжимаемых осадков уменьшается, а их гидравлическое сопротивление потоку жидкой фазы возрастает с увеличением разности давлений. К числу практически несжимаемых можно отнести осадки, состоящие из частиц неорганических веществ размером более 100 мкм, например из частиц песка, кристаллов карбоната кальция и бикарбоната натрия. К сильно сжимаемым относятся осадки гидратов окисей металлов, например алюминия, железа, меди, а также осадки, состоящие из легко деформируемых агрегатов, которые образуются из первичных мелких кристаллов.

Для получения относительно трудно деформируемых агрегатов из тонкодисперсных первичных частиц суспензии к ней добавляют перед ее разделением на фильтре различные коагулянты и флокулянты. Объединение тонкодисперсных частиц в более крупные агрегаты приводит к увеличению размера пор в осадке, соответствующему уменьшению его гидравлического сопротивления и повышению скорости фильтрования.

В производственных условиях под фильтрованием понимают не только операцию разделения суспензии на фильтрат и осадок с помощью пористой перегородки, но и последующие операции промывки, продувки и сушки осадка на фильтре.

Промывку осадка выполняют способами вытеснения и разбавления.

Способ вытеснения состоит в том, что промывную жидкость заливают на поверхность осадка в виде слоя или подают в диспергированном состоянии из разбрызгивающих устройств, причем промывная жидкость под действием разности давлений проходит сквозь поры осадка, вытесняет из них жидкую фазу и смешивается с ней. Этот способ применяют, когда осадок промывается легко и не содержит пор, недоступных для промывной жидкости.

Способ разбавления характеризуется тем, что осадок снимается с фильтровальной перегородки и перемешивается в сосуде, снабженном мешалкой, с промывной жидкостью, после чего образовавшаяся суспензия разделяется на фильтре. Такой способ применяют, если осадок промывается трудно.

В результате промывки получают достаточно разбавленную смесь жидкой фазы суспензии и промывной жидкости. Если жидкая фаза содержат ценные вещества, их извлекают из полученной смеси кристаллизацией, выпариванием или ректификацией. Поэтому желательно, чтобы расход промывной жидкости был по возможности невелик, а концентрация растворенных в ней ценных веществ была насколько возможно высока. При однократной (одноступенчатой) промывке объем промывной жидкости в 1,5-2 раза превышает объем жидкой фазы, оставшейся в порах осадка после разделения суспензии. При многократной (многоступенчатой) промывке, осадок последовательно промывают, используя промывную жидкость со все возрастающей концентрацией растворенных в ней ценных веществ. При этом свежая промывная жидкость поступает на почти промытый осадок, а наиболее концентрированная – на еще не промывшийся. Так осуществляют многоступенчатую противоточную промывку осадка.

Продувку осадка производят с целью вытеснения из его пор оставшейся промывной жидкости. Для продувки обычно используют воздух, а также инертные газы (азот, двуокись углерода), если в осадке присутствует вещество, дающее с воздухом взрывчатую смесь. Продувкой можно удалить только часть жидкости из пор осадка до достижения равновесной влажности.

Сушку осадка на фильтре нагретым или предварительно осушенным воздухом применяют, когда желательно получить на фильтре осадок с окончательной влажностью менее равновесной.

3.4. Уравнения фильтрования

Скорость фильтрования. Важным показателем работы фильтра является скорость фильтрования, определяемая как объем фильтрата, проходящего в единицу времени через единицу поверхности фильтровальной перегородки.

Скорость процесса пропорциональна движущей силе и обратно пропорциональна сопротивлению. Обычно ввиду небольшого размера пор в слое осадка и фильтровальной перегородке, а также малой скорости движения жидкой фазы в порах можно считать, что фильтрование протекает в ламинарной области. Как показывает опыт, при таком условии скорость фильтрования в каждый данный момент прямо пропорциональна разности давлений, но обратно пропорциональна вязкости жидкости фазы и общему гидравлическому сопротивлению слоя осадка и фильтровальной перегородки. Так как в общем случае в процессе фильтрования значения разности давлений и гидравлического сопротивления слоя осадка с течением времени изменяются, переменную скорость фильтрования (м/сек) выражают в дифференциальной форме:

(2.1)

— удельный объем фильтрата (объем фильтрата, полученный с единицы по­верхности фильтрования).

В соответствии с изложенным основное дифференциальное уравнение фильтрования имеет вид:

(2.2)

Из уравнений (2.1) и (2.2) следует, Roc и Rфп выражаются в м-1. Величину Rфп в процессе фильтрования можно считать приблизительно постоянной, пренебрегая некоторым возможным ее увеличением вследствие проникания в поры перегородки новых твердых частиц. Величина Roc с возрастанием толщины слоя осадка изменяется от нуля в начале фильтрования до максимального значения в конце процесса.

Для интегрирования уравнения (2.2) необходимо установить зависимость между сопротивлением слоя осадка и объемом полученного фильтрата. Учитывая пропорциональность объемов осадка и фильтрата, обозначим отношение осадка к объему фильтрата через х0.

Тогда объем осадка будет равен (х0×Vф). Вместе с тем, объем осадка может быть выражен произведением hосS, где hос – высота слоя осадка в м. Следовательно

откуда толщина равномерного слоя осадка на фильтровальной перегородке составит

(2.3)

Сопротивление слоя осадка можно выразить равенством

(2.4)

Из равенства (2.4) следует, что величина r0 характеризует сопротивление, оказываемое потоку жидкой фазы равномерным слоем осадка толщиной 1 м.

Подставив значение Roc из равенства (2.4) в уравнение (2.2), получим

(2.5)

Приняв, что сопротивлением фильтровальной перегородки можно пренебречь (Rфп=0), с учётом равенства (2.3) из уравнения (2.5) найдём:

(2.6)

При μф=1 Н×сек/м2; hос=1 м. и W=1 м/сек величина r0=∆p. Таким образом, удельное сопротивление осадка числено равно разности давлений, необходимой для того, чтобы жидкая фаза с вязкостью 1 Н×сек/м2 фильтровалась со скоростью 1 м/сек сквозь слой осадка толщиной 1 м. Очевидно, что эта гипотетическая разность давлений, которая на практике не используется, должна быть очень велика. Для сильно сжимаемых осадков значение r0 достигает 1012 м-2 и более.

Удельное сопротивление осадка является важней­шей и самой сложной физической величиной в теории фильтрования. Действие различных факторов на про­цесс фильтрования всегда может быть сведено к из­менению величины удельного сопротивления осадка под действием этих факторов. Все факторы, влияю­щие на процесс фильтрования суспензий, в общем слу­чае можно подразделить на гидродинамические и физико-химические. Гидродинамические факторы - это пористость осадка, размер частиц, их удельная по­верхность, сферичность и равномерность укладки. Физико-химические факторы — это степень коагуляций и пептизации твердых частиц суспензии; содержание в ней смолистых и коллоидных примесей, закyпopивающих поры ocaдка; влияние элёктрокинетического потенциала, возникающего на границе раздела твердой и жидкой фаз и уменьшающего сечение пор; наличие сольватной оболочки на частицах осадка. Вследствие совместного проявления гидродинамиче­ских и физико-химических факторов невозможно вы­числить аналитически величину удельного сопротив­ления осадка как функцию всех указанных выше фак­торов, поэтому величину удельного сопротивления - осадка определяют опытным путем.

Приняв Vф=0, что соответствует началу фильтрования, когда на фильтровальной перегородке ещё не образовался слой осадка, из уравнения (2.5) получим:

(2.6а)

При μф=1 Н×сек/м2 и W=1м/сек величина Rфп=∆p. Это означает, что сопротивление фильтровальной перегородки численно равно разности давлений, необходимой для того, чтобы жидкая фаза с вязкостью 1 Н×сек/м2 проходила сквозь фильтровальную перегородку со скоростью 1м/сек. Для ряда фильтровальных перегородок величина Rфп имеет порядок 1010 м-1

Уравнение фильтрования при постоянной разности давлений. При ∆p=const и неизменной температуре для фильтра данной конструкции и выбранной фильтровальной перегородки все входящие в уравнение (2.5) величины, за исключением Vф и τ, постоянны. Проинтегрируем это уравнение в пределах от 0 до Vф и от 0 до τ:

(2.7)

или

Разделив обе части последнего уравнения на

Окончательно получим:

(2.8)

Уравнение (2.8) показывает непосредственно зависимость продолжительности фильтрования от объёма фильтрата.

Рассмотрим некоторые закономерности фильт­рования при постоянной разности давления с обра­зованием несжимаемого осадка на несжимаемой фильтровальной перегородке. Расчетное уравнение фильтрования, известное как уравнение Рутса.

(2.9)

«C» и «K» — размерные комплексы, составленные из постоянных для процесса фильтрования величин. Эти комплексы называют константами фильтрования и их значения равны

(2.10) и (2.11)

В выражения (2.10) и (2.11) входят удельное сопро­тивление осадка г и фильтровальной перегородки Rфп. Величину удельногосопротивленияосадка, как было указано ранее, не удается опреде­лить расчетным путем, и ее находят эксперименталь­но, не удается рассчитать и сопротивление фильтро­вальной перегородки, поэтому значения констант фильтрования определяют экспериментально. Про­цессы фильтрования, которые при прочих равных условиях отличаются только значениями перепада дав­ления, будут характеризоваться равными значениями константы К.

Переменными величинами в уравнении (2.9) яв­ляются время процесса фильтрования τ и удельный объем фильтрования . Решив это уравнение относительно удельного объема, можно для заданной продолжительности процесса фильтрования опреде­лить объем полученного фильтрата как Vф=qSф. Урав­нение (2.9) позволяет решить и обратную задачу: при известном удельном объеме фильтрата рассчитать продолжительность процесса фильтрования.

Уравнение фильтрования при постоянной скорости процесса. Для фильтрования при постоянной скорости производную dVф/dτ можно заменить равным отношением конечных величин Vф/τ. После такой замены, решая уравнение (2.5) относительно ∆p, находим:

(2.12)

Умножив и разделив первое слагаемое правой части этого уравнения на τ и приняв во внимание, что постоянная скорость фильтрования

(2.13)

получим

(2.14)

Уравнение (2.14) показывает, что при W=const разность давлений возрастает по мере увеличения продолжительности фильтрования.

Это уравнение применимо к несжимаемым осадкам; при использовании его для сжимаемых осадков следует иметь в виду зависимость удельного сопротивления осадка от разности давлений.

Уравнение фильтрования при постоянных разности давлений и скорости.Такой вид фильтрования осуществим, если чистая жидкость фильтруется сквозь слой осадка неизменной толщины при постоянной разности давлений. Промывку осада на фильтре способом вытеснения, когда над осадком находится слой промывной жидкости, можно рассматривать как фильтрование промывной жидкости сквозь слой осадка неизменной толщины при постоянных разности давлений и скорости.

(2.15)

Это уравнение даёт зависимость объёма фильтрата от продолжительности фильтрования чистой жидкости, в частности промывной жидкости. Поскольку в рассматриваемом случае ∆p=const, уравнение (2.15) применимо для несжимаемых и сжимаемых осадков.

3.5. Определение констант фильтрования, удельного сопротивления осадка и сопротивления фильтровальной перегородки

Поделив левую и правую части уравнения (2.9) qK, получим

(2.16)

Так как значения величин μф, r,x, Rфп и ∆р в процессе фильтрования при постоянной разности давления ос­таются неизменными, то уравнение (2.16) в коорди­натах τ/q и q является уравнением прямой линии, на­клоненной к оси абсцисс под углом, тангенс которого равен , и отсекающей на оси ординат (при q=0) отрезок, равный .

Для определения констант фильтрования проводят опыт по разделению суспензии с помощью филь­тра при постоянной разности давления. В течение опыта замеряют ряд соответствующих друг другу зна­чений q и τ. По данным опыта в координатах τ/q÷q наносят точки, через которые наилучшим образом проводят прямую линию, для которой определяют тангенс угла наклона α и отрезок А, отсекаемый ею на оси ординат. По этим данным рассчитывают зна­чения констант как

(2.17)

(2.18)

Зная константы фильтрования, можно на основании выражений (2.10) и (2.11) определить удельное со­противление осадка и сопротивление фильтровальной перегородки как

(2.19)

(2.20)

Определив удельное сопротивление осадка и зная х, можно рассчитать величину константы К для филь­трования при других значениях разности давления.

3.6. Наибольшая производительность фильтров

Из основного уравнения фильтрования (2.5) следует, что при прочих равных условиях скорость фильтрования тем больше и производительность фильтра тем выше, чем меньше объём полученного фильтрата или пропорциональная этому объёму толщина слоя осадка на фильтровальной перегородке. Поэтому для повышения производительности фильтра необходимо стремиться к возможно быстрому удалению осадка с фильтровальной перегородки.

Для фильтров непрерывного действия это равносильно требованию удалять с фильтровальной перегородки слой осадка наименьшей толщины, обусловленной свойствами осадка и особенностями устройства, применяемого для его снятия с перегородки.

Для фильтров периодического действия характерно, что операция удаления осадка вызывает прекращение фильтрования. Полный цикл работы на таком фильтре состоит из операций подготовки фильтра, загрузни суспензии, фильтрования, промывки осадка, продувки его и удаления. Фильтрование, промывку и продувку называют основными операциями, причём продолжительность их возрастает с увеличением объёма фильтрата или толщины осадка. Подготовку фильтра, загрузку суспензии и удаление осадка объединяют как вспомогательные операции, продолжительность которых в практических расчётах может быть принята независимой от объёма фильтрата или толщины осадка.

Для увеличения производительности периодически действующего фильтра по основным операциям целесообразно как можно чаще повторять циклы его работы, подавая на фильтр по возможности небольшие порции суспензии. Однако частое повторение циклов работы фильтра обусловливает столь же частое повторение вспомогательных операций, когда основные операции прерываются. Отсюда следует, что в каждом случае существует такая оптимальная продолжительность цикла работы, при которой фильтр обладает наибольшей производительностью.

3.7. Фильтровальные перегородки

Фильтровальная перегородка представляет собой существенную часть фильтра и от правильного выбора ее во многом зависят производительность фильтровального оборудования и чистота получаемого фильтрата. Предварительный выбор фильтровальной перегородки основывается на сопоставлении свойств разделяемой суспензии и характеристик различных перегородок; окончательный выбор производится после экспериментальной проверки. Правильно выбранная фильтровальная перегородка должна иметь поры по возможности большего размера, что уменьшает ее гидравлическое сопротивление. Однако размер пор не должен превышать некоторой величины, обеспечивающей хорошую задерживающую способность перегородки по отношению к твердым частицам суспензии и получение фильтрата необходимой чистоты.

В настоящее время известно большое число разнообразных по свойствам фильтровальных перегородок, изготавливаемых из неорганических и органических материалов. Все фильтровальные перегородки могут быть подразделены на различные группы по нескольким признакам.

По принципу действия различают поверхностные и глубинные фильтровальные перегородки. Поверхностные перегородки отличаются тем, что твердые частицы суспензии при ее разделении в основном задерживаются на их поверхности, не проникая в поры. Глубинные перегородки, которые используются преимущественно для осветления жидкостей, содержащих твердые частицы в небольшой концентрации, характеризуются тем, что частицы суспензии в процессе ее разделения проникают в их поры и задерживаются там.

Фильтровальные перегородки могут быть классифицированы по материалам, из которых они изготовлены, например, на перегородки, выполненные из хлопчатобумажных, шерстяных, синтетических, стеклянных, керамических и металлических материалов. Такая классификация удобна при выборе перегородки с определенной способностью противостоять действию химически агрессивных веществ.

По структуре фильтровальные перегородки подразделяются на гибкие и негибкие. Гибкие перегородки могут быть металлическими или неметаллическими, негибкие перегородки – жесткими, состоящими из связанных твердых частиц, или нежесткими, состоящими из несвязанных твердых частиц.

3.8. Устройство фильтров

Одной из основных характеристик, используемых для классификации фильтров, является периодичность или непрерывность их действия, в связи с чем они подразделяются на фильтры периодического и непрерывного действия. Для осуществления процессов фильтрования с образованием осадка применяют как периодически, так и непрерывно действующие фильтры. Для проведения процессов фильтрования с закупориванием пор используют фильтры периодического действия. На фильтрах периодического действия осуществляют любой режим фильтрования, на фильтрах непрерывного действия практически – лишь режим фильтрования при постойной разности давлений. Для производств малой мощности при большом ассортименте выпускаемых продуктов могут быть рекомендованы фильтры периодического действия. Для производств большой мощности и производств с непрерывным технологическим процессом необходимы фильтры непрерывного действия.

По способу создания разности давлений фильтровальное оборудование может быть подразделено на фильтры, работающие под вакуумом, и фильтры, работающие под давлением. В ряде случаев фильтр, в основе действия которого лежит определенный принцип, может работать и под вакуумом, и под давлением при соответствующем изменении его конструкции. По конструктивным соображениям целесообразно использовать, где это возможно, фильтры, работающие под вакуумом, поскольку фильтры, работающие под давлением, должны быть механически более прочными. Однако в тех случаях, когда осадок обладает существенным гидравлическим сопротивлением, но не слишком большой сжимаемостью, целесообразно применять фильтры, работающие под давлением.

Принята также классификация по взаимному направлению силы тяжести и движения фильтрата. Такая классификация основана на том, что для проведения процессов фильтрования и создания оптимальных условий для работы фильтров большое значение имеют процессы осаждения твердых частиц суспензии под действием силы тяжести. В соответствии с этой классификацией различают фильтры с противоположными (угол 1800), совпадающими (угол 00) и перпендикулярными (угол 900) направлениями силы тяжести и движения фильтрата. Число конструкций фильтровального оборудования очень велико. Ниже будут рассмотрены принцип действия и основные особенности лишь некоторых наиболее распространенных типов фильтров.

Нутч-фильтры. Нутч представляет собой наиболее простой фильтр периодического действия, работающий под вакуумом или под давлением, в котором направления силы тяжести и движения фильтрата совпадают.

Нутч, работающий под вакуумом, изготавливается в виде прямоугольного или круглого открытого резервуара с плоским или выпуклым дном, над которым на некотором расстоянии находится ложное дно, предназначенное для поддержания горизонтальной фильтровальной перегородки. Суспензия заливается на нутч сверху и в пространстве под ложным дном создается вакуум, в результате чего жидкая фаза суспензии проходит в виде фильтрата сквозь фильтровальную перегородку и удаляется из нутча, а твердая фаза суспензии в виде осадка накапливается на этой перегородке. Преимуществом такого нутча является простота конструкции, а недостатком – необходимость удаления осадка вручную.

Одна из конструкций нутча, работающего под давлением не более 3 ат, показана на рис. 2.3. Нутч состоит из корпуса 1 с рубашкой 2, съемной крышки 3 и перемещающегося дна 4; фильтровальная перегородка 5, расположенная на опорной перегородке 6, представляет собой ткань или слой волокон (в последнем случае над фильтровальной перегородкой 5 помещают защитную сетку 7). Над фильтровальной перегородкой находится кольцевая перегородка 8 высотой 150 мм, поддерживающая осадок во время его выгрузки. Обе перегородки укреплены на дне нутча, которое для удаления осадка опускается на 200 мм и поворачивается на такой угол, чтобы осадок можно было снять с фильтровальной перегородки вручную. Для подачи суспензии и сжатого воздуха служат штуцера 9 и 10, для удаления фильтрата – штуцер 11; фильтр снабжен также предохранительным клапаном 12.

Достоинством всех нутчей является возможность равномерной и полной промывки осадка, поскольку промывная жидкость может быть равномерно распределена по всей его поверхности в необходимом количестве. Общий недостаток нутчей – относительно большая занимаемая ими площадь помещения, приходящаяся на 1 м2 поверхности фильтрования.

Фильтрпрессы. Фильтром периодического действия, работающим под давлением, является фильтрпресс с вертикальными рамами (плиточно-рамный фильтрпресс), в котором направления силы тяжести и движения фильтрата перпендикулярны. Этот фильтр можно рассматривать как ряд нутчей небольшой высоты и особой конструкции, размещенных вертикально вплотную один к другому, в результате чего достигается большая поверхность фильтрования, отнесенная к единице производственной площади, занимаемой фильтром.

Фильтрпресс с вертикальными рамами (рис. 2.4) состоит из чередующихся плит 1 и рам 2 одинаковых размеров. Плиты и рамы опираются боковыми ручками на два параллельных бруса 3. Между соприкасающимися поверхностями плит и рам имеются тканевые фильтровальные перегородки. Рамы и плиты, уплотненные по периметру краями этих перегородок, прижимаются к неподвижной плите 4 при помощи перемещающейся на роликах подвижной плиты 5, на которую действует давление жидкости, развиваемое гидравлической системой 6. Суспензия поступает по штуцеру 7, а промывная жидкость – по штуцерам 8. Штуцера 7 и 8 расположены на неподвижной плите и сообщаются с каналами, которые образованы совпадающими отверстиями в плитах и рамах. Фильтрат и промывная жидкость удаляются через краны 9.

Плиты (рис. 2.5) имеют по краям гладкую поверхность 1, а в середине – рифленую с желобками 2. Плиты покрыты фильтровальной перегородкой 3 и снабжены кранами для удаления фильтрата и промывной жидкости. Краны через каналы 4 и два других, почти перпендикулярных им канала, оканчивающихся у желобков, соединены с пространствами внутри двух рам, смежных с данной плитой. В плитах и рамах выполнены отверстия 5 и 6, которые образуют каналы для прохода суспензии и промывной жидкости. В фильтровальных перегородках сделаны отверстия, точно совпадающие с отверстиями в рамах и плитах.

Схема работы плиточно-рамного фильтрпресса показана на рис. 2.6. В стадии фильтрования суспензия по среднему каналу 1 и каналам 2 поступает в пространство 3, ограниченное двумя фильтровальными перегородками (примыкающими к рифленым поверхностям плит 4) и внутренней поверхностью рамы 5. Жидкая фаза суспензии одновременно проходит через обе фильтровальные перегородки, после чего по желобам и каналам 6 поступает к кранам 7, которые в этой стадии работы фильтрпресса открыты у всех плит 4. Когда пространство 3 будет заполнено осадком, подачу суспензии прекращают.

В стадии промывки по двум боковым каналам 8 и каналам 9, которые имеются только у половины плит 4, подают промывную жидкость. Во время промывки половина кранов 7 закрыта таким образом, что промывная жидкость последовательно проходит одну фильтровальную перегородку, слой осадка, вторую фильтровальную перегородку, после чего по каналам 6 и открытым кранам 7 отводится из фильтрпресса. По окончании промывки осадок в фильтрпрессе продувают сжатым воздухом или паром. Затем отодвигают подвижную плиту, разъединяют плиты и рамы и осадок удаляют в бункер.

Описанные фильтры до настоящего времени распространены в промышленности, особенно для разделения суспензий с небольшой концентрацией твердых частиц, когда трудоемкие операции и разборки, разгрузки и сборки производятся относительно редко. Они применимы также для разделения суспензий при повышенной температуре, охлаждение которых недопустимо, например, вследствие выпадения кристаллов их жидкости.

К достоинствам этих фильтрпрессов относится большая поверхность фильтрования на единицу занимаемой ими площади помещения, а также возможность отключать отдельные неисправные плиты, закрывая кран на выходе фильтрата, и отсутствие движущихся частей в процессе эксплуатации. К недостаткам таких фильтрпрессов можно отнести необходимость в ручном обслуживании, несовершенную промывку осадка и быстрое изнашивание фильтровальной ткани.





Дата публикования: 2015-02-20; Прочитано: 1944 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.019 с)...