![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Для непрерывных случайных величин применяют такую форму закона распределения, как функция распределения.
Функция распределения случайной величины Х, называется функцией аргумента х, что случайная величина Х принимает любое значение меньшее х (Х<х)
F(х)=Р(Х<х)
F(х) - иногда называют интегральной функцией распределения или интегральным законом распределения.
Функция распределения обладает следующими свойствами:
1. 0<F(х)<1
2. если х1>х2,то F(х1)>F(х2)
3.
функция может быть изображена в виде графика. Для непрерывной величины это будет кривая изменяющееся в пределах от 0 до 1, а для дискретной величины - ступенчатая фигура со скачками.
С помощью функции распределения легко находится вероятность попадания величины на участок от α до β
Р(α<х<β) рассмотрим 3 события
А - α<Х
В - α<Х<β
С - Х<β
С=А+В
Р(С)=Р(А)+Р(В)
Р(α<х<β)=Р(α)-Р(β)
Дата публикования: 2015-03-29; Прочитано: 161 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!