![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,...,n с вероятностями
,
где 0<р<l, q=1-p.
Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.
Ряд распределения биномиального закона имеет вид:
Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения выполнено, ибо
есть не что иное, как сумма всех членов разложения бинома Ньютона:
Математическое ожидание случайной величины Х, распределенной по биноминальному закону,
а ее дисперсия
Определение. Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m,... (бесконечное, но счетное множество значений) с вероятностями
,
Ряд распределения закона Пуассона имеет вид:
Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения выполнено, ибо сумма ряда
.
На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Рm(λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.
Теорема. Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.
и
Дата публикования: 2015-03-29; Прочитано: 422 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!