Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Запасы устойчивости



Понятие структурной устойчивости.

САУ может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.

САУ, неустойчивые по первой причине называются структурно неустойчивыми. Это означает, что изменением параметров САУ нельзя добиться ее устойчивости, нужно менять ее структуру.

Например, если САУ состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис.72. При увеличении коэффициента усиления САУ K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении Kкрит АФЧХ не пересечет точку (-1, j0). При дальнейшем увеличении K, САУ будет неустойчива. И наоборот, при уменьшении K такую САУ в принципе возможно сделать устойчивой, поэтому ее называют структурно устойчивой.

Если САУ астатическая, то при ее размыкании характеристическое уравнение можно представить в виде: p D1p(p) = 0, где n - порядок астатизма, равный количеству последовательно включенных интеграторов. Это уравнение имеет нулевые корни, поэтому при 0, АФЧХ стремится к (рис.71в и 71г). Например, пусть Wр(p) = , здесь = 1, тогда АФЧХ разомкнутой САУ:

W(j ) = = P() + jQ().

Так как порядок знаменателя больше порядка числителя, то при 0 имеем P() - , Q() -j . Подобная АФЧХ представлена на рис.73.

Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при 0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, САУ, имеющая одно интегрирующее звено, является структурно устойчивой.

Если САУ имеет два интегрирующих звена (порядок астатизма = 2), ее АФЧХ уходит в бесконечность во втором квадранте (рис.74). Например, пусть Wр(p) = , тогда АФЧХ САУ:

W(j ) = = P() + jQ().

При 0 имеем P() - , Q() + j . Такая САУ не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.

Структурно неустойчивую САУ можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие или форсирующие) или изменив структуру САУ, например, с помощью местных обратных связей.

Понятие запаса устойчивости

В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать САУ так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости.

Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.

Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис.75).

Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.

Как уже отмечалось, с ростом коэффициента передачи разомкнутой САУ растет модуль каждой точки АФЧХ и при некотором значении K = Kкр АФЧХ пройдет через критическую точку (рис.76) и попадет на границу устойчивости, а при K > Kкр замкнутая САУ станет неустойчива. Однако в случае “клювообразных” АФЧХ (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых САУ (рис.77). В этом случае запас устойчивости определяется двумя отрезками h1 и h2, заключенными между критической точкой и АФЧХ.

Обычно при создании САУ задаются требуемыми запасами устойчивости h и , за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой САУ входить не должна (рис.78).

32. Прямые показатели качества САУ.

Прямые методы оценки качества управления

Устойчивость САУ является необходимым, но не достаточным условием для ее эффективного функционирования. Важное значение имеет качество управления, то есть степень удовлетворения совокупности требований к форме кривой переходного процесса, которая определяет пригодность системы для конкретных условий работы.

Для сравнения качества различных САУ исследуется их реакция на типовые воздействия. Обычно это ступенчатая (толчковая) функция, как один из наиболее неблагоприятных видов возмущений. Для систем, работающих с периодическими возмущениями, целесообразно оценивать качество управления при гармоническом воздействии. Все остальные возмущения можно разложить на ступенчатые воздействия с использованием интеграла Дюамеля, либо в ряд Фурье.

Все современные методы анализа качества управления можно разделить на прямые методы анализа по кривой переходного процесса или по частотным характеристикам, и косвенные методы, позволяющие, не решая дифференциального уравнения, определить некоторые показатели качества процесса управления; к ним, в частности, относятся корневые, интегральные и частотные методы.

1. Оценка переходного процесса при ступенчатом воздействии.

П усть САР (рис.84) при t = 0 воздействует возмущающий фактор f в виде единичной ступенчатой функции. При нулевых начальных условиях динамический режим описывается переходной характеристикой h(t) = y(t) = y(t) - y0 = -e(t) (рис.85). По ней можно определить все наиболее важные показатели качества управления.

^ 1. Статическая ошибка eуст = y0 - yуст = -hуст - это разность между предписанным и действительным значением управляемой величины в установившемся режиме. Для статических систем статическая ошибка отлична от нуля (рис.85а) и пропорциональна величине возмущающего фактора f (в линейных САУ) и коэффициенту передачи системы по данному возмущению, а для астатических - равна нулю (рис.85б).

^ 2. Время переходного процесса tпп - это время от момента воздействия, начиная с которого колебания управляемой величины не превышают некоторого наперед заданного значения, то есть |h(t)-hуст| . Обычно принимают = 0.05hуст.

3. Перерегулирование s - это максимальное отклонение управляемой величины от установившегося значения, выраженное в относительных единицах: s = . Здесь hmax1 - значение первого максимума переходной характеристики. При больших перерегулированиях могут возникнуть значительные динамические усилия в механической части системы, электрические перенапряжения и т.п. Допустимое значение s определяется из опыта эксплуатации. обычно оно составляет 0.1...0.3, иногда допускается до 0.7.

4. Частота колебаний = 2 /T, где T - период колебаний.

5. Число колебаний n за время tпп.

6. Декремент затухания k, равный отношению двух смежных перерегулирований: .

П ри создании САУ допустимые значения показателей качества оговариваются техническими условиями, что можно представить в виде диаграммы показателей качества. Это область, за границы которой не должна выходить переходная характеристика (рис.86).

2. Оценка качества управления при периодических возмущениях

Периодические возмущения можно разложить в ряд Фурье, поэтому их воздействие удобно анализировать по частотным характеристикам, показывающим, как звено преобразует гармонический сигнал.

О бычно используют АЧХ замкнутой САУ (рис.87), которую легко построить по АФЧХ разомкнутой САУ Wp(j ), по формуле

Aз = .

По этой кривой можно получить ряд показателей качества.

^ 1. Показатель колебательности M - это отношение максимального значения АЧХ замкнутой САУ к ее значению при = 0, то есть M = Aзmax()/Aз(0). Так как

Aз(0) = 1,

при Kp >> 1, то M Aзmax(). Он характеризует склонность системы к колебаниям и не должен превышать 1.5.

2. Резонансная частота системы p - это частота, при которой колебания проходят через систему с наибольшим усилением, а АЧХ достигает максимума.

3. ^ Полоса пропускания системы - это интервал частот от = 0 до = ^ 0, на котором выполняется условие Aз( 0) 0.707. Если она высокая, то система будет воспроизводить высокочастотные помехи.

4. Частота среза ср - при которой АЧХ замкнутой САУ принимает значение, равное единице. По ней можно судить о длительности переходного процесса tпп (1..2)2 / ср.

5. Склонность САУ к колебаниям характеризуют также ее запасы устойчивости по модулю (допускается от 6 до 20дб) и по фазе (допускается от 30 до 60 градусов).





Дата публикования: 2015-03-29; Прочитано: 937 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...