![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Какую цену заплатит инвестор за бескупонную облигацию с номиналом в 1000,00 и погашением через три года, если требуемая норма доходности равна 4,4%?
1000 / (1 + 0,044)3 = 878,80.
Из приведенных соотношений следует, что цена бескупонной облигации связана обратной зависимостью с рыночной ставкой r и сроком погашения n. При этом чем больше срок погашения облигации, тем более чувствительней ее цена к изменениям процентных ставок на рынке.
Дюрация бескупонной облигации всегда равна сроку погашения, т.е.: D = n.
Облигации с нулевым купоном представляют интерес для инвесторов, проводящих операции с четко определенным временным горизонтом. Автоматизация анализа облигаций с нулевым купоном
Несмотря на то, что в ППП EXCEL нет специальных средств для анализа долгосрочных бескупонных облигаций, при определении их основных характеристик – курсовой цены и доходности к погашению, можно использовать рассмотренные выше функции ДОХОД() и ЦЕНА(),указав им нулевое значение для аргумента "ставка" и 1 для аргумента "частота" (см.табл. 2.4).
На рис. 2.11 приведен пример простейшего шаблона для анализа долгосрочных бескупонных облигаций, выполненного с использованием предлагаемого подхода. Формулы шаблона приведены в табл. 2.5.
Рис. 2.11. Шаблон для анализа долгосрочных бескупонных облигаций
Таблица 2.5
Формулы шаблона
Ячейка | Формула |
В9 | =ЦЕНА(B5; B3; 0; В7;B4; 1) |
В10 | =ДОХОД(B5; B3; 0; B6; B4; 1) |
В11 | =B4-B6 |
Руководствуясь рис. 2.11 и табл. 2.5, сформируйте данный шаблон и сохраните его на магнитном диске под именем ZEROBOND.XLT.
Осуществим проверку работоспособности шаблона на следующем примере.
Дата публикования: 2015-03-26; Прочитано: 249 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!