![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Предположим, что облигация из примера 2.7 была куплена по номиналу. При этом инвестор ожидает рост рыночной процентной ставки на 1%. Определить ожидаемое изменение цены облигации.
Величина средней продолжительности платежей D для этой облигации была найдена при решении примера 2.7 и составила приблизительно 2.8. Определим ожидаемое процентное изменение YTM:
YTM = 0,01 / (1 + 0,07) = 0,0093.
Найдем величину MD:
MD = 2,8 / 0,0093 = 2,62.
Предполагаемое процентное изменение цены облигации составит:
Р = - (0,01 2,62) = -0,0262 -2,6%.
Таким образом, курс облигации К должен понизиться на 2,6%. Поскольку облигация была куплена по номиналу, новый курс должен быть приблизительно равен: 100 - 2,6 = 97,4%.
Осуществим проверку нашего предположения (т.е. определим курс облигации, при условии, что YTM = 8%):
Завершая рассмотрение свойств дюрации кратко остановимся на недостатках, присущих данному показателю.
Первое ограничение вытекает из нелинейной формы связи между YTM и Р (см. рис. 2.1). Поскольку скорость изменения показателей при этом будет разной, применение показателей D или MD для прогнозирования цен облигаций в случае значительных колебаний процентных ставок будет приводить к преувеличению падения курса при росте YTM и занижению реального роста курса при уменьшении YTM.
Другим существенным недостатком дюрации как меры измерения процентного риска является неявное допущение о независимости доходности от срока погашения. Таким образом, предполагается, что краткосрочные процентные ставки изменяются также, как и долгосрочные. Например, если доходность по 3-х месячным ГКО изменилась на 1%, то и доходность 15-летних ОВВЗ также должна измениться на 1%. Нереалистичность подобного допущения очевидна.
Несмотря на отмеченные недостатки, показатель средней продолжительности платежей (дюрация) широко используется в теоретическом и прикладном анализе [13, 15, 16].
Как было показано выше, причинами проблем, возникающих при использовании дюрации, является нелинейность взаимосвязи между ценой и доходностью. В качестве ее характеристики может быть использована вторая производная функции (2.6):
Из данного выражения, в частности, следует выпуклость кривой цена-доходность (рис. 2.1). С математической точки зрения, значение данного выражения представляет собой скорость изменения дюрации при изменении доходности к погашению YTM. Геометрически – это расстояние между касательной к кривой "цена-доходность" в некоторой точке (рис. 2.1) и самой кривой.
Нетрудно заметить, что численное значение второй производнойзависит от величины купонного платежа ct, срока обращения Т и доходности YTM. Поскольку для купонных облигаций, в большинстве случаях, ct = const и срок погашения Т известен заранее, главный интерес представляет зависимость от YTM. Как следует из формулы выпуклости, численное значение второй производнойуменьшается с ростом YTM и обратно. Таким образом, выпуклость является объяснением сформулированного выше правила асимметричного изменения цен при одинаковом изменении доходности (величина роста курса всегда больше, чем величина падения). Перепишем формулу в следующем виде:
.
Разделив на Р, получим количественное измерение степени крутизны (выпуклости) кривой "цена-доходность":
.
Из приведенных формул следует, что выпуклость прямо зависит от срока погашения Т и дюрации соответственно. Можно также показать, что выпуклость является возрастающей функцией от последней. В целом, свойства выпуклости по отношению к Т и k аналогичны свойствам дюрации.
Вместе с тем, выпуклость связана положительной зависимостью с изменениями процентных ставок (доходности к погашению). Объяснение этого свойства следует из того факта, что выпуклость можно определить как разность между фактической ценой облигации и ее ценой, определенной с использованием модифицированной дюрации.
Совместное использование дюрации D и выпуклости V при анализе ценных бумаг с фиксированным доходом позволяет существенно повысить точность оценки изменений их стоимости. Вместе с тем, их совместное использование требует соответствующей формализации.
Один из подходов к решению данной проблемы базируется на аппроксимации изменения цены облигации P с помощью рядов Тейлора. При этом, степенной ряд будет иметь следующий вид:
.
Ограничимся рассмотрением первых двух элементов ряда. Разделив обе части на Р, имеем:
.
Первое слагаемое теперь является дюрацией D, а второе – выпуклостью V, умноженной на константу. С учетом вышеизложенного, более эффективную формулу для определения будущей цены облигации в зависимости от изменений доходности можно задать в следующем виде:
,
где Р – будущая цена при условии, что доходность изменится на величину (YTM); Р0 – текущая цена; D – дюрация; V – выпуклость.
Результаты сравнительного анализа точности прогнозирования будущей цены 15-летней ОВВЗ седьмого транша с годовым купоном 3% при требуемой норме доходности 9% в зависимости от изменений доходности к погашению с использованием дюрации и полученной модели приведен в таблице 2.3а.
Таблица 2.3а
Сравнительный анализ точности прогноза цены ОВВЗ
YTM | YTM | Реальная цена (P) | Прогноз цены (модель с D) | Прогноз цены (модель с D и V) | ||
P | Отклон. | Р | Отклон. | |||
-0,04 | 0,05 | 79,24068 | 72,46125 | 6,779 | 77,95719 | 1,2835 |
-0,03 | 0,06 | 70,86325 | 67,25594 | 3,607 | 70,3474 | 0,5158 |
-0,02 | 0,07 | 63,56834 | 62,05062 | 1,518 | 63,42461 | 0,1437 |
-0,01 | 0,08 | 57,20261 | 56,84531 | 0,357 | 57,18881 | 0,0138 |
0,09 | 51,64 | 51,64 | 0,000 | 51,64 | 0,0000 | |
0,01 | 0,10 | 46,75744 | 46,43469 | 0,323 | 46,77818 | 0,0207 |
0,02 | 0,11 | 42,47304 | 41,22938 | 1,244 | 42,60336 | 0,1303 |
0,03 | 0,12 | 38,70222 | 36,02406 | 2,678 | 39,11553 | 0,4133 |
0,04 | 0,13 | 35,37621 | 30,81875 | 4,557 | 36,31469 | 0,9385 |
Отметим, что добавлением в полученную модель элементов ряда Тейлора более высоких порядков можно добиться еще большей точности прогноза, вместе с тем, их доля в общем изменении стоимости достаточно мала.
Проведенные исследования свойств количественных характеристик облигаций являются теоретической базой для разработки моделей управления портфелями ценных бумаг с фиксированным доходом.
Дата публикования: 2015-03-26; Прочитано: 180 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!