Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Пример 2.8



Предположим, что облигация из примера 2.7 была куплена по номиналу. При этом инвестор ожидает рост рыночной процентной ставки на 1%. Определить ожидаемое изменение цены облигации.

Величина средней продолжительности платежей D для этой облигации была найдена при решении примера 2.7 и составила приблизительно 2.8. Определим ожидаемое процентное изменение YTM:

 YTM = 0,01 / (1 + 0,07) = 0,0093.

Найдем величину MD:

MD = 2,8 / 0,0093 = 2,62.

Предполагаемое процентное изменение цены облигации составит:

 Р = - (0,01  2,62) = -0,0262  -2,6%.

Таким образом, курс облигации К должен понизиться на 2,6%. Поскольку облигация была куплена по номиналу, новый курс должен быть приблизительно равен: 100 - 2,6 = 97,4%.

Осуществим проверку нашего предположения (т.е. определим курс облигации, при условии, что YTM = 8%):

Завершая рассмотрение свойств дюрации кратко остановимся на недостатках, присущих данному показателю.

Первое ограничение вытекает из нелинейной формы связи между YTM и Р (см. рис. 2.1). Поскольку скорость изменения показателей при этом будет разной, применение показателей D или MD для прогнозирования цен облигаций в случае значительных колебаний процентных ставок будет приводить к преувеличению падения курса при росте YTM и занижению реального роста курса при уменьшении YTM.

Другим существенным недостатком дюрации как меры измерения процентного риска является неявное допущение о независимости доходности от срока погашения. Таким образом, предполагается, что краткосрочные процентные ставки изменяются также, как и долгосрочные. Например, если доходность по 3-х месячным ГКО изменилась на 1%, то и доходность 15-летних ОВВЗ также должна измениться на 1%. Нереалистичность подобного допущения очевидна.

Несмотря на отмеченные недостатки, показатель средней продолжительности платежей (дюрация) широко используется в теоретическом и прикладном анализе [13, 15, 16].

Как было показано выше, причинами проблем, возникающих при использовании дюрации, является нелинейность взаимосвязи между ценой и доходностью. В качестве ее характеристики может быть использована вторая производная функции (2.6):

Из данного выражения, в частности, следует выпуклость кривой цена-доходность (рис. 2.1). С математической точки зрения, значение данного выражения представляет собой скорость изменения дюрации при изменении доходности к погашению YTM. Геометрически – это расстояние между касательной к кривой "цена-доходность" в некоторой точке (рис. 2.1) и самой кривой.

Нетрудно заметить, что численное значение второй производнойзависит от величины купонного платежа ct, срока обращения Т и доходности YTM. Поскольку для купонных облигаций, в большинстве случаях, ct = const и срок погашения Т известен заранее, главный интерес представляет зависимость от YTM. Как следует из формулы выпуклости, численное значение второй производнойуменьшается с ростом YTM и обратно. Таким образом, выпуклость является объяснением сформулированного выше правила асимметричного изменения цен при одинаковом изменении доходности (величина роста курса всегда больше, чем величина падения). Перепишем формулу в следующем виде:

.

Разделив на Р, получим количественное измерение степени крутизны (выпуклости) кривой "цена-доходность":

.

Из приведенных формул следует, что выпуклость прямо зависит от срока погашения Т и дюрации соответственно. Можно также показать, что выпуклость является возрастающей функцией от последней. В целом, свойства выпуклости по отношению к Т и k аналогичны свойствам дюрации.

Вместе с тем, выпуклость связана положительной зависимостью с изменениями процентных ставок (доходности к погашению). Объяснение этого свойства следует из того факта, что выпуклость можно определить как разность между фактической ценой облигации и ее ценой, определенной с использованием модифицированной дюрации.

Совместное использование дюрации D и выпуклости V при анализе ценных бумаг с фиксированным доходом позволяет существенно повысить точность оценки изменений их стоимости. Вместе с тем, их совместное использование требует соответствующей формализации.

Один из подходов к решению данной проблемы базируется на аппроксимации изменения цены облигации  P с помощью рядов Тейлора. При этом, степенной ряд будет иметь следующий вид:

.

Ограничимся рассмотрением первых двух элементов ряда. Разделив обе части на Р, имеем:

.

Первое слагаемое теперь является дюрацией D, а второе – выпуклостью V, умноженной на константу. С учетом вышеизложенного, более эффективную формулу для определения будущей цены облигации в зависимости от изменений доходности можно задать в следующем виде:

,

где Р – будущая цена при условии, что доходность изменится на величину  (YTM); Р0 – текущая цена; D – дюрация; V – выпуклость.

Результаты сравнительного анализа точности прогнозирования будущей цены 15-летней ОВВЗ седьмого транша с годовым купоном 3% при требуемой норме доходности 9% в зависимости от изменений доходности к погашению с использованием дюрации и полученной модели приведен в таблице 2.3а.

Таблица 2.3а
Сравнительный анализ точности прогноза цены ОВВЗ

 YTM YTM Реальная цена (P) Прогноз цены (модель с D) Прогноз цены (модель с D и V)
      P Отклон. Р Отклон.
-0,04 0,05 79,24068 72,46125 6,779 77,95719 1,2835
-0,03 0,06 70,86325 67,25594 3,607 70,3474 0,5158
-0,02 0,07 63,56834 62,05062 1,518 63,42461 0,1437
-0,01 0,08 57,20261 56,84531 0,357 57,18881 0,0138
  0,09 51,64 51,64 0,000 51,64 0,0000
0,01 0,10 46,75744 46,43469 0,323 46,77818 0,0207
0,02 0,11 42,47304 41,22938 1,244 42,60336 0,1303
0,03 0,12 38,70222 36,02406 2,678 39,11553 0,4133
0,04 0,13 35,37621 30,81875 4,557 36,31469 0,9385

Отметим, что добавлением в полученную модель элементов ряда Тейлора более высоких порядков можно добиться еще большей точности прогноза, вместе с тем, их доля в общем изменении стоимости достаточно мала.

Проведенные исследования свойств количественных характеристик облигаций являются теоретической базой для разработки моделей управления портфелями ценных бумаг с фиксированным доходом.





Дата публикования: 2015-03-26; Прочитано: 180 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.065 с)...