Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Задачи математической статистики. Выборочный метод. Эмпирическая функция распределения. Полигон и гистограмма



Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных —.результатов наблюдений.

Первая задача математической статистики - указать способы сбора и группировки статистических сведений, полученных в результате наблюдений или в результате специально поставленных экспериментов.

Вторая задача математической статистики - разработать методы анализа статистических данных в зависимости от целей исследования. Сюда относятся:

а) оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости случайной величины от одной или нескольких случайных величин и др.;

б) проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого неизвестен.

Современная математическая статистика разрабатывает способы определения числа необходимых испытаний до начала исследования (планирование эксперимента), в ходе исследования (последовательный анализ) и решает многие другие задачи. Современную математическую статистику определяют как науку о принятии решений в условиях неопределенности.

Итак, задача математической статистики состоит в создании методов сбора и обработки статистических данных для получения научных и практических выводов.

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

Заметим, что в теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике - соответствие между наблюдаемыми вариантами и их частотами, или относительными частотами.

Пусть известно статистическое распределение частот количественного признака X. Введем обозначения: nх—число наблюдений, при которых наблюдалось значение признака, меньшее х; n - общее число наблюдений (объем выборки). Ясно, что относительная частота события X < х равна nх/n. Если х изменяется, то, вообще говоря, изменяется и относительная частота, т, е. относительная

частота nх/n есть функция от х. Так как эта функция находится эмпирическим (опытным) путем, то ее называют эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию F*(x), определяющую для каждого значения х относительную частоту события X < х.

Итак, по определению,

F*(x) = nх/n,

где nх - число вариант, меньших х; n - объем выборки.

В отличие от эмпирической функции распределения выборки функцию распределения F (х) генеральной совокупности называют теоретической функцией распределения. Различие между эмпирической и теоретической функциями состоит в том, что теоретическая функция F (х) определяет вероятность события X < х, а эмпирическая функция F* (х) определяет относительную частоту этого же события. Из теоремы Бернулли следует, что относительная частота события X < х, т. е. F* (х) стремится по вероятности к вероятности F'{x) этого события. Из определения функции F* (х) вытекают следующие ее свойства:

1) значения эмпирической функции принадлежат отрезку

[0, 1];

2) F* (х) — неубывающая функция;

3) если xi — наименьшая варианта, то F*(x) = 0 при х х1, если х2-— наибольшая варианта, то F*(x)= 1 при x>x2.

Эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности.

Для наглядности строят различные графики статистического распределения и, в частности, полигон и гистограмму.

Полигоном частот называют ломаную, отрезки которой соединяют точки (х1; n1), (x2; n2),..., (xk; nk). Для построения полигона частот на оси абсцисс откладывают варианты xi, a на оси ординат—соответствующие им частоты ni. Точки (xi; ni) соединяют отрезками прямых и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (х1; W1), (х2W2),......, (xk; Wk). Для построения полигона относительных частот на оси абсцисс откладывают варианты xi, а на оси ординат—соответствующие им относительные частоты Wi. Точки (хi; Wi) соединяют отрезками прямых и получают полигон относительных частот.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, a высоты равны отношению ni/h (плотность частоты).

Параметры распределения. Точечные и интервальные оценки.

Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.

Выборочной средней хв называют среднее арифметическое значение признака выборочной совокупности.

Если все значения x1, x2,..., хn признака выборки объема n различны, то

хв = (х1 + х2 + ….+ хn)/n.

Если же значения признака х1, х2..... xk имеют соответственно частоты n1, n2..... nk, причем n1 + …. + nk = n, то

хв = (n1 * х1 + …. + nk* хk)/n.

т. е. выборочная средняя есть средняя взвешенная значений признака с весами, равными соответствующим частотам.

Выборочная средняя, найденная по данным одной выборки, есть, очевидно, определенное число. Если же извлекать другие выборки того же объема из той же генеральной совокупности, то выборочная средняя будет изменяться от выборки к выборке. Таким образом, выборочную среднюю можно рассматривать как случайную величину, а следовательно, можно говорить о распределениях (теоретическом и эмпирическом) выборочной средней и о числовых характеристиках этого распределения (его называют выборочным), в частности о математическом ожидании и дисперсии выборочного распределения.

Для того чтобы охарактеризовать рассеяние наблюдаемых значений количественного признака выборки вокруг своего среднего значения хв, вводят сводную характеристику— выборочную дисперсию.

Выборочной дисперсией Dв называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения хв.

Если все значения х1, х2,..., хn признака выборки объема n различны, то

Если же значения признака х1, х2,..., хn имеют соответственно частоты n1, n2,…,nk, причем n1+ n2+…+nk= n, то

т. е. выборочная дисперсия есть средняя взвешенная квадратов отклонений с весами, равными соответствующим частотам.

Кроме дисперсии для характеристики рассеяния значений признака выборочной совокупности вокруг своего среднего значения пользуются сводной характеристикой— средним квадратическим отклонением.

Выборочным средним квадратическим отклонением (стандартом) называют квадратный корень из выборочной дисперсии:

Вычисление дисперсии, безразлично—выборочной или генеральной, можно упростить, используя следующую теорему.

Теорема. Дисперсия равна среднему квадратов значений признака минус квадрат общей средней:

.

Точечной называют оценку, которая определяется одним числом. Все оценки, рассмотренные выше, — точечные. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т. е. приводить к грубым ошибкам. По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками.

Интервальной называют оценку, которая определяется двумя числами — концами интервала. Интервальные оценки позволяют установить, точность и надежность оценок.

Доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью .

Интервал имеет случайные концы (их называют доверительными границами). Действительно, в разных выборках получаются различные значения . Следовательно, от выборки к выборке будут изменяться и концы доверительного интервала, т. е. доверительные границы сами являются случайными величинами — функциями от х1, х2,..., хn.

Так как случайной величиной является не оцениваемый параметр в, а доверительный интервал, то более правильно говорить не о вероятности попадания в доверительный интервал, а о вероятности того, что доверительный интервал покроет .

Метод доверительных интервалов разработал американский статистик Ю. Нейман, исходя из идей английского статистика Р. Фишера.

Оценку называют классической. Из формулы , определяющей точность классической оценки, можно сделать следующие выводы:

1) при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2) увеличение надежности оценки приводит к увеличению t (Ф (t) — возрастающая функция), следовательно, и к возрастанию ; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Статистическая проверка статистических гипотез.

Часто необходимо знать закон распределения генеральной совокупности. Если закон распределения неизвестен, но имеются основания предположить, что он имеет определенный вид (назовем его А), выдвигают гипотезу: генеральная совокупность распределена по закону А. Таким образом, в этой гипотезе речь идет о виде предполагаемого распределения.

Возможен случай, когда закон распределения известен, а его параметры неизвестны. Если есть основания предположить, что неизвестный параметр равен определенному значению , выдвигают гипотезу: = . Таким образом, в этой гипотезе речь идет о предполагаемой величине параметра одного известного распределения.

Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и многие другие.

Статистической называют гипотезу о виде неизвестного распределения, или о параметрах известных распределений.

Например, статистическими являются гипотезы:

1) генеральная совокупность распределена по закону Пуассона;

2) дисперсии двух нормальных совокупностей равны между собой.

В первой гипотезе сделано предположение о виде неизвестного распределения, во второй —о параметрах двух известных распределений.

Гипотеза «на Марсе есть жизнь» не является статистической, поскольку в ней не идет речь ни о виде, ни о параметрах распределения.

Наряду с выдвинутой гипотезой рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, то имеет место противоречащая гипотеза. По этой причине эти гипотезы целесообразно различать.

Нулевой (основной) называют выдвинутую гипотезу H0.

Конкурирующей (альтернативной) называют гипотезу Н1, которая противоречит нулевой.

Например, если нулевая гипотеза состоит в предположении, что математическое ожидание а нормального распределения равно 10, то конкурирующая гипотеза, в частности, может состоять в предположении, что а 10. Коротко это записывают так: H0:а=10; Н1 а=10.

Различают гипотезы, которые содержат только одно и более одного предположений.

Простой называют гипотезу, содержащую только одно предположение. Например, если параметр показательного распределения, то гипотеза H0: =5 -простая. Гипотеза: математическое ожидание нормального распределения равно 3 ( известно) — простая.

Сложной называют гипотезу, которая состоит из конечного или бесконечного числа простых гипотез. Например, сложная гипотеза Н: > 5 состоит из бесчисленного множества простых вида Hi: = вi, где вi - любое число, большее 5. Гипотеза: математическое ожидание нормального распределения равно 3 ( неизвестно) — сложная.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверку производят статистическими методами, ее называют статистической., В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т. е. могут быть допущены ошибки двух родов.

Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза.

Ошибка второго рода состоит в том, что будет принята неправильная гипотеза.

Подчеркнем, что последствия этих ошибок могут оказаться весьма различными. Например, если отвергнуто правильное решение «продолжать строительство жилого дома», то эта ошибка первого рода повлечет материальный ущерб; если же принято неправильное решение «продолжать строительство», несмотря на опасность обвала стройки, то эта ошибка второго рода может повлечь гибель людей. Можно привести примеры, когда ошибка первого рода влечет более тяжелые последствия, чем ошибка второго рода.

Замечание 1. Правильное решение может быть принято также в двух случаях:

1) гипотеза принимается, причем и в действительности она правильная;

3) гипотеза отвергается, причем и в действительности она неверна.

Замечание 2. Вероятность совершить ошибку первого рода

принято обозначать через а; ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значимости, равный 0,05, то это означает, что в пяти случаях из ста имеется риск допустить ошибку первого рода (отвергнуть правильную гипотезу).

Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Эту величину обозначают через U или Z, если она распределена нормально, F или v2 - по закону Фишера - Снедекора, Т — по закону Стьюдента, - по закону «хи квадрат» и т. д. Поскольку вид распределения во внимание приниматься не будет, обозначим эту величину в целях общности через K.

Статистическим критерием (или просто критерием) называют случайную величину K, которая служит для проверки нулевой гипотезы.

Например, если проверяют гипотезу о равенстве дисперсий двух нормальных генеральных совокупностей, то в качестве критерия К принимают отношение исправленных выборочных дисперсий:

Эта величина случайная, потому что в различных опытах дисперсии принимают различные, наперед неизвестные значения, и распределена по закону Фишера - Снедекора.

Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин и таким образом получают частное (наблюдаемое) значение критерия.

Наблюдаемым значением Кнабл называют значение критерия, вычисленное по выборкам. Например, если по двум выборкам найдены исправленные выборочные дисперсии s = 20 и s = 5, то наблюдаемое значение критерия F

После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая гипотеза отвергается, а другая — при которых она принимается.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.

Областью принятия гипотезы (областью допустимых

значений) называют совокупность значений критерия, при

которых гипотезу принимают.

Основной принцип проверки статистических гипотез

можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области -гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы - гипотезу принимают.

Поскольку критерий К- одномерная случайная величина, все ее возможные значения принадлежат некоторому интервалу. Поэтому критическая область и область принятия гипотезы также являются интервалами и, следовательно, существуют точки, которые их разделяют.

Критическими точками (границами) kкр называют точки, отделяющие критическую область от области принятия гипотезы.

Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная литература:

  1. Высшая математика для экономистов. / Под. Ред. Н. Ш. Кремера. М.-1998г.
  2. В.С. Шипачев. Высшая математика. М.: Высшая школа, 1990.
  3. Ильин В. А., Куркина А.В., Высшая математика М.,2002г.
  4. А.И. Карасев, З.М. Аксютина, Т.И. Савельева. Курс высшей математики для экономических вузов: В 2-х частях. М.: Высшая школа, 1982.
  5. Л.А. Кудрявцев, Б.П. Демидович. Краткий курс высшей математики. М.: Высшая школа, 1989.
  6. В.Е. Гмурман. Теория вероятностей и математическая статистика. М.: Высшая школа, 1977.
  7. Б.В.Гнеденко. Курс теории вероятностей.
  8. П.Е.Данко, А.Г.Попов, Т.Я. Кожевникова. Высшая математика в упражнениях и задачах. В 2-х частях. М., Мир и образование, 2003.
  9. В.П.Минорский, Сборник задач по высшей математике. М.: Высшая школа, 1987.

Дополнительная литература:

  1. .Я.С. Бугров, С.М.Никольский. Элементы линейной алгебры и аналитической геометрии, М.: Наука, 1980.
  2. Я.С. Бугров, С.М.Никольский. Дифференциальное и интегральное исчисление, М.: Наука, 1980.
  3. Я.С. Бугров, С.М.Никольский. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного, М.: Наука, 1980.
  4. Д.В.Беклемишев. Курс аналитической геометрии и линейной алгебры, М.:Наука, 1976.
  5. Н.С.Пискунов. Дифференциальное и интегральное исчисление, т.1, М.:Наука,1976.
  6. Н.С.Пискунов. Дифференциальное и интегральное исчисление, т.2, М.:Наука,1976.
  7. Индивидуальные занятия по высшей математике. Под общей редакцией А.П. Рябушко. Минск: Высшая школа, 2000.

ПЛАНЫ ПРОВЕДЕНИЯ СЕМИНАРСКИХ ЗАНЯТИЙ.

Методические рекомендации: Воспользоваться формулами, приведенными в конспектах лекций или методическими рекомендациями по соответствующим темам из сборника задач [9]. Варианты решения подобных задач приведены в учебно-методическом пособии [8].

Тема №1. Частные производные и дифференциал функции многих переменных.

Задание:

  1. Дайте определение частных производных и дифференциала функции многих переменных.

Решите задачи: 1858-1872 (четные).

Тема №2. Исследование функции многих переменных.

Задание:

  1. Дайте определение точки экстремума функции двух переменных.
  2. Сформулируйте необходимые и достаточные условия экстремума функции двух переменных.

Решите задачи: 2030-2032.

Тема № 3. Двойные и тройные интегралы.

Задание:

1. Дайте определение двойных и тройных интегралов.

2. Сформулируйте теорему сведения двойного интеграла к повторному.

Решите задачи: 2054-2064.

Тема № 4. Элементы теория поля.

Задание:

1. Дайте определение основных элементов теории поля: градиент, поток, потенциал, циркуляция, дивергенция, ротор.

2) Запишите формулы вычислений градиента, потока, потенциала, циркуляции, дивергенции, ротора.

Решите задачи: 2074-2084.

Тема № 5. Ряды.

Задание:

1. Дайте определение ряда, числового ряда, функционального и степенного.

2. Запишите формулы вычислений суммы ряда.

Решите задачи: 2124-2164.





Дата публикования: 2015-03-26; Прочитано: 1086 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.021 с)...