![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Определение производной функции в точке.
Пусть функция f(x) определена на промежутке (a; b), и
- точки этого промежутка. Производной функции f(x) в точке
называется предел отношения приращения функции к приращению аргумента при
. Обозначается
.
Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке. Если предел бесконечен, то говорят, что производная бесконечна в данной точке. Если же предел не существует, то и производная функции в этой точке не существует.
Функцию f(x) называют дифференцируемой в точке , когда она имеет в ней конечную производную.
Если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b), то функцию называют дифференцируемой на этом промежутке. Таким образом, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию
, которую называют производной функции f(x) на интервале (a; b).
Операция нахождения производной называется дифференцированием.
Проведем разграничения в природе понятий производной функции в точке и на промежутке: производная функции в точке – это есть число, а производная функции на промежутке – это есть функция.
Давайте разберем это на примерах для ясности картины. При дифференцировании будем пользоваться определением производной, то есть переходить к нахождению пределов. При возникновении трудностей рекомендуем обращаться к разделу теории пределы, основные определения, примеры нахождения, задачи и подробные решения.
19. Геометрический и механический смысл производной..
Геометрический смысл производной. Рассмотрим график функции y = f (x):
Из рис.1 видно, что для любых двух точек A и B графика функции:
где - угол наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.
Уравнение касательной. Выведем уравнение касательной к графику функции в точке A (x 0, f (x 0)). В общем случае уравнение прямой с угловым коэффициентом f ’(x 0) имеет вид:
y = f ’(x 0) · x + b.
Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:
f (x 0) = f ’(x 0) · x 0 + b,
отсюда, b = f (x 0) – f ’(x 0) · x 0, и подставляя это выражение вместо b, мы получим уравнение касательной:
y = f (x 0) + f ’(x 0) · (x – x 0).
Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x (t) времени t. В течение интервала времени от t 0 до t 0 + точка перемещается на расстояние: x (t 0 +
) - x (t 0) =
, а её средняя скорость равна: va =
/
. При
0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v (t 0) материальной точки в момент времени t 0. Но по определению производной мы имеем:
отсюда, v (t 0) = x’ (t 0), т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ (t).
20. Правила дифференцирования.
Дата публикования: 2015-03-26; Прочитано: 404 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!