![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Все методы решения систем линейных алгебраических уравнений можно разделить на две группы:
· точные методы;
· методы последовательных приближений.
С помощью точных методов, проделав конечное число операций, можно получить точные значения неизвестных. При этом предполагается, что коэффициенты и правые части системы известны точно, а все вычисления проводятся без округлений. К точным методам решения систем линейных алгебраических уравнений относятся такие методы как метод обратной матрицы, метод Крамера (определителей), метод Гаусса и др.
Точные методы решения систем линейных алгебраических уравнений применяют для решения систем относительно небольшой размерности (до ). Привлекательными в методах последовательных приближений является их самоисправляемость и простота реализации на ПК. Для начала вычислений требуется задание начальных приближений для искомых неизвестных. К числу методов последовательных приближений относятся: метод простой итерации, метод Зейделя, метод релаксации и др.
Система линейных алгебраических уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.
Решить систему линейных алгебраических уравнений - значит определить, является ли она совместной или нет. В случае если система совместна, нужно найти ее решение.
Для определения совместности системы можно использовать теорему Кронекера - Капелли, смысл которой состоит в следующем: для того, чтобы система линейных алгебраических уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы коэффициентов системы был равен рангу ее расширенной матрицы коэффициентов.
Дата публикования: 2015-03-26; Прочитано: 200 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!