Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Наближення майже вільних (слабо зв’язаних) електронів



Нехай у рівнянні Шредінгера (6.1), що визначає одноелектронні стани кристалу, кристалічний потенціал в середньому є значно менший від кінетичної енергії електрона. Це означає, що електрони в таких станах слабо зв’язані з атомами і майже вільно рухаються по кристалу.

У цьому випадку за гамільтоніан нульового наближення в рівнянні (10.40) можна вибрати оператор кінетичної енергії , а гамільтоніаном збурення вважати оператор потенціальної енергії Рівняння (10.40) у цьому випадку набуває вигляду

, (13.1)

де

. (13.2)

Розв’язком рівняння (13.1) є

,

(13.3)

Співставляючи рівняння (10.40) і (13.1), бачимо, що індексом стану в цьому випадку є хвильовий вектор . У зв’язку з цим замінимо в рівнянні (10.43) індекс l на , а індекс m на , врахувавши, що . Тут індексом ми позначимо стани електрона при відсутності збурення. В результаті рівняння (10.43) набуває вигляду

- . (13.4)

Власна функція гамільтоніана електрона в кристалі (6.2), що відповідає власному значенню , дорівнює (10.45)

. (13.5)

Встановимо зв'язок між зображеннями Фур’є і матричними елементами потенціальної енергії

Використовуючи (10.18), (13.3), (9.2) запишемо

=

= . (13.6)

Підставляючи (13.6) у (13.4), одержимо

. (13.7)

Після заміни рівняння (13.7) набуває вигляду:

. (13.8)

Член суми в рівнянні (13.8), що відповідає , містить . Коефіцієнт ряду Фур’є (13.6) дорівнює середньому значенню потенціальної енергії

= (13.9)

і може мати значну величину. Змінивши відповідним чином початок відліку потенціальної енергії , можна вважати, що коефіцієнти ряду Фур’є для потенціальної енергії у наближенні майже вільних електронів є малими і задовольняють умові

. (13.10)

Знайдемо розв’язок системи рівнянь (13.8) методом розкладу за степенями малого параметру . Для цього запишемо

(13.11)

.

Тут величини , , ,... пропорційні відповідно і т. д. Аналогічно означені члени ряду для .

Зважаючи, що при відсутності збурення електрон знаходиться в стані, який описується хвильовою функцією (13.3), можна покласти

= . (13.12)

У цьому можна легко переконатися, використовуючи (13.5).

Підставимо (13.11) у (13.8) і прирівняємо члени одного порядку малості. Члени нульового порядку малості задовольняють рівнянню

. (13.13)

Враховуючи (13.12), з рівняння (13.13) знаходимо

. (13.14)

У першому порядку малості маємо

, (13.15)

Тут перше рівняння одержано з (13.8) при , а друге – при

Використовуючи (13.12), (13.14), з рівнянь (13.15) знаходимо

, (13.16)

= , (13.17)

Коефіцієнт знаходимо з умови нормування хвильової функції (13.5), яка повинна виконуватись з точністю до членів першого порядку включно. В результаті маємо

= 0. (13.18)

У другому порядку малості з рівняння (13.8) при одержимо

. (13.19)

Підставляючи (13.12), (13.17) у (13.19), знаходимо

. (13.20)

Підставляючи (13.14), (13.16), (13.20) у другу рівність (13.11), одержимо вираз для енергії електрона

. (13.21)

Тут ми скористались співвідношенням

, (13.22)

що випливає з умови дійсності потенціальної енергії

. (13.23)

Із виразів (13.5), (13.11), (13.12), (13.17) одержимо для хвильової функції електрона

. (13.24)

Скориставшись (13.6), запишемо вирази (13.21), (13.24) у вигляді

(13.25)

. (13.26)

Розглянемо ідеальний кристал. У цьому випадку потенціальна енергія задовольняє умову

. (13.27)

Згідно (9.10), таку періодичну функцію можна розкласти в ряд Фур’є за векторами оберненої решітки, тобто записати у вигляді

. (13.28)

Підставляючи (13.28) у (13.6), можна показати, що

. (13.29)

За умови (13.29) система рівнянь (13.8) зводиться до

, (13.30)

при цьому , якщо .

Вираз (13.5) для хвильової функції електрона у цьому випадку набуває вигляду

. (13.31)

Співставляючи (13.8) і (13.30), а також (13.5) і (13.31), бачимо, що рівняння (13.30) і вираз (13.31) одержуються відповідно з рівняння (13.8) і виразу (13.5) заміною на .

Отже, розв’язок рівняння (13.30) одержується з виразу (13.21) заміною на і має вигляд

. (13.32)

Хвильова функція електрона дорівнює (див. (13.24))

. (13.33)

Якщо хвильовий вектор задовольняє для деякого вектора умову

, (13.34)

то відповідний член суми у (13.32) і (13.33) прямує до нескінченності. Це означає, що розв’язок системи рівнянь (13.30) у вигляді (13.32), (13.33) не існує. Використовуючи (13.3), запишемо умову (13.34) у вигляді

. (13.35)

Хвильовий вектор задовольняє умову (13.35), якщо кінець вектора лежить на площині, що обмежує зону Бріллюена (рис. 13.1)

Рис.13.1. Положення хвильового вектора в зоні Бріллюена, яке відповідає умові (13.35).

Рівняння (13.35) є рівнянням площини, яка обмежує зону Бріллюена.

Рівність (13.34) є умовою виродження власних значень гамільтоніана (13.2) нульового наближення. Таким чином, розв’язок системи рівнянь (13.30) можна шукати за методом теорії збурень для випадку вироджених власних значень гамільтоніана нульового наближення. У цьому випадку хвильову функцію електрона можна записати у вигляді лінійної комбінації власних функцій , гамільтоніана нульового наближення, що відповідають одному і тому ж власному значенню (13.3). Отже, хвильова функція електрона записується у вигляді (див. (13.31))

. (13.36)

Такий же вигляд має хвильова функція і в більш загальному випадку, коли рівність (13.34) виконується наближено. Рівняння для коефіцієнтів , хвильової функції (13.36) можна одержати із системи рівнянь (13.30), якщо в ній зберегти тільки ті члени, що містять , , тобто записати у вигляді

(13.37)

.

Умовою існування розв’язку системи рівнянь (13.37) є

. (13.38)

При одержанні виразу (13.38) ми використали умову дійсності потенціальної енергії (13.22). Рівняння (13.38) для енергії електрона має два корені

. (13.39)

Для випадку, коли умова (13.34) виконується точно, корені рівняння (13.38) мають вигляд

= . (13.40)

Таким чином, двократно вироджений рівень енергії розщепився на два рівні , (13.40).

Графік залежностей енергії електрона від хвильового вектора для одновимірної решітки зображено на рис.9.

Для першої зони Бріллюена проекція хвильового вектора приймає значення , де a – період кристалічної решітки. При значеннях , далеких від , де n = 1,2,3 - ціле число, поправка до енергії мала, тобто можна вважати (13.32). При = енергія електрона у кристалі суттєво відрізняється від енергії вільного електрона : рівень енергії розщеплюється на величину і т. д. (13.40). У спектрі енергії електрона виникають заборонені інтервали енергії шириною і т.д. Енергетичний спектр електрона набуває зонного характеру, тобто дозволені інтервали енергії чергуються із забороненими. Як видно із одержаних результатів, у випадку майже вільних електронів їх енергетичний спектр має майже параболічний характер (13.3). У відповідності з умовою (7.12) енергія електрона в межах кожної дозволеної зони є періодичною функцією хвильового вектора (зображена тонкими лініями, що продовжують вліво і вправо відрізки параболи на рис.9). Це дозволяє розглядати всі енергетичні зони в межах першої чи приведеної зони Бріллюена. Такий підхід до опису енергетичного спектру називається методом приведених зон.

Рис.13.2. Енергетичний спектр слабо зв’язаних електронів.

Підхід, у якому значення хвильового вектора не обмежуються першою зоною Бріллюена, називається методом розширених зон (залежність енергії від хвильового вектора зображена на рис.13.2 жирними лініями). Ми бачимо, що для слабо зв’язаних електронів у першій зоні Бріллюена енергія електрона в послідовних енергетичних зонах при k = 0 позмінно приймає мінімальне і максимальне значення. Однією з характерних особливостей одновимірного випадку, що показаний на рис.13.2, є те, що послідовні зони дозволеної енергії електрона завжди розділені забороненими інтервалами енергії. У двовимірному і тривимірному випадках це не завжди має місце. В цих випадках енергія електрона в деякій точці зони Бріллюена для верхньої енергетичної зони може бути нижчою від енергії, взагалі кажучи, в іншій точці зони Бріллюена для нижньої енергетичної зони. У цьому випадку має місце перекриття енергетичних зон. Внаслідок цього може заповнюватись електронами верхня енергетична зона при неповністю заповненій нижній зоні.





Дата публикования: 2015-02-22; Прочитано: 479 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...