![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Для применения этого метода исходная система (10.1) должна быть преобразована к виду
![]() | (10.2) |
или
Далее, выбрав начальное приближение и используя систему (10.2), строим итерационный процесс поиска по схеме:
т.е. на каждом k-ом шаге поиска вектор переменных находим, используя значения переменных, полученных на шаге (k-1).
Итерационный процесс поиска прекращается как только выполнится условие
![]() | (10.3) |
При этом условие (10.3) должно выполняться одновременно по всем переменным.
Метод простых итераций используется для решения таких систем линейных уравнений, в которых выполняется условие сходимости итерационного процесса поиска, а именно:
![]() | (10.4) |
т.е. сумма абсолютных величин частных производных всех преобразованных уравнений системы (10.2) по j-ой переменной меньше единицы.
На рисунке 10.1 представлена схема алгоритма решения систем нелинейных уравнений методом простых итераций.
20)Как реализуется алгоритм моделирующей программы?
На втором этапе моделирования – этапе алгоритмизации модели и ее машинной реализации – математическая модель, сформированная на первом этапе, воплощается в конкретную машинную модель. При этом алгоритм поведения реальной системы воплощается в виде программы на ЭВМ, и за своевременный переход от одной модели к другой отвечает логическая структура этой программы. Проявление особых состояний в процессе функционирования в программе отображается различного рода условиями, которые приводят к разветвлению вычислительного процесса, к вызову процедур или подпрограмм.
Как правило, моделирующая программа кроме собственно моделирования какого-либо объекта должна обеспечивать ввод исходных данных для моделирования, обработку результатов моделирования, проведение оптимизации модели.
Удобной формой представления логической структуры моделей процессов функционирования систем и машинных программ является схема. На различных этапах моделирования составляются обобщенные и детальные логические схемы моделирующих алгоритмов, а также схемы программ.
Обобщенная (укрупненная) схема моделирующего алгоритма задает общий порядок действий при моделировании системы без каких-либо уточняющих деталей. Обобщенная схема показывает, что необходимо выполнить на очередном шаге моделирования, например, обратиться к датчику случайных чисел.
Детальная схема моделирующего алгоритма содержит уточнения, отсутствующие в обобщенной схеме. Детальная схема показывает не только, что следует выполнить на очередном шаге моделирования системы, но и как это выполнить.
Логическая схема моделирующего алгоритма представляет собой логическую структуру модели процесса функционирования системы. Логическая схема указывает упорядоченную во времени последовательность логических операций, связанных с решением задачи моделирования.
Схема программы отображает порядок программной реализации моделирующего алгоритма с использование конкретного математического обеспечения. Схема программы представляет собой интерпретацию логической схемы моделирующего алгоритма разработчиком программы на базе конкретного алгоритмического языка. Различие между этими схемами заключается в том, что логическая схема отражает логическую структуру модели процесса функционирования системы, а схема программы – логику машинной реализации модели с использованием конкретных программно-технических средств моделирования.
Логическая схема алгоритма и схема программы могут быть выполнены как в укрупненной, так и в детальной форме. Для начертания этих схем могут использоваться следующие способы представления алгоритмов:
1. С использование условных графических обозначений
2. Представление схемы алгоритма в виде граф схемы
21)Как устанавливается адекватность модели?
При анализе адекватности уравнения регрессии (модели) исследуемому процессу, возможны следующие варианты:
1. Построенная модель на основе F-критерия Фишера в целом адекватна и все коэффициенты регрессии значимы. Такая модель может быть использована для принятия решений и осуществления прогнозов.
2. Модель по F-критерию Фишера адекватна, но часть коэффициентов не значима. Модель пригодна для принятия некоторых решений, но не для прогнозов.
3. Модель по F-критерию адекватна, но все коэффициенты регрессии не значимы. Модель полностью считается неадекватной. На ее основе не принимаются решения и не осуществляются прогнозы.
Проверить значимость (качество) уравнения регрессии–значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным, достаточно ли включенных в уравнение объясняющих переменных для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели, по каждому наблюдению из относительных отклонений определяют среднюю ошибку аппроксимации. Проверка адекватности уравнения регрессии (модели) осуществляется с помощью средней ошибки аппроксимации, величина которой не должна превышать 10-12% (рекомендовано).
Оценка значимости уравнения регрессии в целом производится на основе F-критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной (y) от среднего значения (yср.) раскладывается на две части: «объясненную» и «необъясненную»:
Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-критерия Фишера. Фактическое значение F -критерия Фишера сравнивается с табличным значением Fтабл. (α, k1, k2) при заданном уровне значимости α и степенях свободы k1= m и k2=n-m-1. При этом, если фактическое значение F-критерия больше табличного Fфакт > Fтеор, то признается статистическая значимость уравнения в целом. Для парной линейной регрессии m=1, поэтому:
Эта формула в общем виде может выглядеть так:
Отношение объясненной части дисперсии переменной (у) к общей дисперсииназывают коэффициентом детерминации и используют для характеристики качества уравнения регрессии или соответствующей модели связи. Соотношение между объясненной и необъясненной частями общей дисперсии можно представить в альтернативном варианте:
Дата публикования: 2015-01-26; Прочитано: 848 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!