Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Комплексные числа. Тригонометрическая и показательная формы записи. Операции над комплексными числами, записанными в тригонометрической форме



Ко́мпле́ксные чи́сла— расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма , где и — вещественные числа, — мнимая единица.

Тригонометрическая и показательная формы

Если вещественную и мнимую части комплексного числа выразить через модуль и аргумент (, ), то всякое комплексное число , кроме нуля, можно записать в тригонометрической форме

Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:

где — расширение экспоненты для случая комплексного показателя степени.

Отсюда вытекают следующие широко используемые равенства:





Дата публикования: 2015-01-25; Прочитано: 197 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...