Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Классификация. ПЗУ. Принципы построения и



ПЗУ. Принципы построения и

Микросхемы ПЗУ (Постоянное Запоминающее Устройство, ROM — Read-Only Memory

— память, доступная только для чтения) представляют собой однократно программируемое устройство памяти, предназначенное для чтения информации (энергонезависимое).
Различают несколько типов ПЗУ:
• ROM (Read-Only Memory, Постоянное Запоминающее Устройство, ПЗУ). Строятся на мультиплексорах или по масочной структуре (см. ниже). Программируются на заводе при производстве. Репрограммирование невозможно.
• PROM (Programmable ROM, Программируемое ПЗУ, ППЗУ). В качестве элементов программирования используются специальные перемычки. Программирование заключается в разрушении или образовании перемычки. Также является однократным действием, однако, в отличие от ROM, его можно осуществить даже в домашних условиях.
• EPROM (Erasable PROM, Стираемое ППЗУ, СППЗУ). Исторически явилось первым репрограммируемым ПЗУ. Технология основана на применении транзисторов с плавающим затвором. ПЗУ на основе EPROM требуют стирания старой конфигурации под воздействием
ультрафиолетового (УФ) излучения с извлечением ИМС из устройств и имеют ограничение числа циклов программировании из-за деградации свойств материалов под воздействием УФ излучения.
• EEPROM (Electrically Erasable PROM, Электрически Стираемое ППЗУ, ЭС-ППЗУ). ППЗУ, очищаемое электрическими сигналами. Для обновления не требует извлечения микросхемы из устройства и допускает достаточно большое число циклов стирания.
• FLASH (флэш-память). Технологически аналогична EEPROM, однако в ней используется блочный доступ к сохраняемым данным.
ROM. Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация, как программы в микроконтроллерах, начальные загрузчики и BIOS в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации можно построить на мультиплексорах (рис. 1).
В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля).
Чтобы увеличить разрядность ячейки памяти ПЗУ, эти микросхемы можно соединять параллельно (выходы и записанная информация, естественно, остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рис. 2.
В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация выполняется при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше, — это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в многомерную и тем самым существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Программирование ПЗУ производится на заводе – изготовителе.
PROM.Также разработаны программируемые ПЗУ. В этих микросхемах постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве микросхемы изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти логических единиц. В процессе программирования на выводы питания и выходы микросхемы подается повышенное питание. При этом если на выход микросхемы подается напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход микросхемы подать низкий уровень напряжения (присоединить к корпусу), то через перемычку будет протекать ток, который испарит эту перемычку, и при последующем считывании информации из этой ячейки будет считываться логический ноль. Программирование производится при помощи специального программатора.
Возможно также применение другой технологии создания PROM, когда перемычка образована трехслойным диэлектриком с чередованием слоев «оксид-нитрид-оксид». Программирующий импульс напряжения пробивает перемычку и создает проводящий канал между электродами. Величина тока, создаваемого импульсами программирования, влияет на диаметр проводящего канала, что позволяет управлять параметрами проводящей перемычки.

21 вопрос (Перепрограммируемые ПЗУ)

В перепрограммируемых ПЗУ, т.е. с изменяемым содержимым, на затворах матриц МОП-транзисторов длительное время могут храниться разряды, образующих заданный код. Все перепрограммируемые ПЗУ представляют собой МОП-приборы.

ПЗУ, программируемые маской. Самым простым видом ПЗУ является диодное ПЗУ (рис.3.41).

 
 

Рисунок 3.41 - Схема диодного ПЗУ

Выбор нужного слова производится подачей сигнала низкого уровня на соответствующую адресную шину Аi. При этом диоды, соединяющие разрядные линии и выбранную адресную линию, имеют малое сопротивление, что обуславливает низкий уровень напряжения на соответствующих разрядных линиях. Если же диода в точке пересечения нет, то ток через резистор R не протекает и на выходе соответствующей разрядной линии Шjустанавливается единичный сигнал. В ПЗУ (рис.3.41) записано восемь 3-разрядных кодов, соответствующих восьми двоичным числам от 000 до 111.

Кроме этого, матрица ПЗУ может быть построена и на МОП-транзисторах. С помощью маски для металлизации подключаются необходимые элементы.

В ПЗУ, программируемых пользователем, в отличие от ПЗУ, программируемых маской, информация может быть занесена пользователем с помощью специального пульта программирования. Применение ПЗУ такого типа целесообразно при небольшом числе БИС ПЗУ.

ПЗУ строятся на основе биполярных диодных матриц (рис.3.42) или матриц биполярных транзисторов аналогично матрице МОП-транзисторов в ПЗУ, программируемых маской. Работа ПЗУ обоих типов базируется на осаждении плавких вставок (ПВ) последовательно с переходами база-эмиттер биполярных транзисторов или p-n переходами диодов. ПВ представляет собой небольшой участок металлизации, который разрушается (расплавляется) при подаче импульса тока (обычно величиной 50-100 мкА и длительностью 2 мс). Как и в ПЗУ, программируемой маской, ошибки, допущенные при программировании ПЗУ рассматриваемого типа, исправить нельзя.

 
 

Рисунок 3.42 - Биполярная диодная матрица

Перепрограммируемые ПЗУ (ППЗУ) относятся к числу полупостоянных ЗУ, так как после стирания хранимой в ПЗУ информации возможно занесение в тот же накопитель новых данных. Существует два типа ППЗУ: на основе МОП-матриц и на основе ПЗУ со стиранием информации ультрафиолетовым (УФ) облучением кристалла.

22 вопрос (Назначение и типы Flash-памяти)

На сегодня производители выпускают накопители на флэш-памяти нескольких типов: это карты Compact Flash, SmartMedia, MultiMedia Card, SecureDigital Card, Memory Stick и

USB-ключи.

ATA Flash.Первыми накопителями на флэш-памяти, появившимися рынке, были карты ATA Flash. Эти накопители изготавливаются в виде стандартных карт PC Card. Помимо микросхем флэш-памяти в них устанавливается АТА-контроллер, и при работе они эмулируют обычный IDE-диск. Интерфейс этих карт параллельный. Карты ATA Flash не получили широкого распространения и в настоящее время используются крайне редко.

Compact Flash.Карты Compact Flash (CF) были предложены компанией SanDisk в качестве более компактной и удобной в работе альтернативы картам ATA Flash. Поэтому разработчики стандарта CF предусмотрели возможность работы этих карт как устройств PC Card или как IDE-устройств. В первом случае карты работают как обычные PC Card устройства и их интерфейс «превращается» в шину PC Card. Во втором — как жесткие IDE-диски и их интерфейс работает как АТА-шина.

Карты CF впервые появились в 1994 г. Все карты этого типа имеют 50-контактный параллельный интерфейс. Кстати, существуют карты CF двух типов — Туре I и Туре II. Карты типа Туре II на два миллиметра толще и появились только потому, что раньше корпуса карт Туре I не позволяли разместить внутри флэш-память большого объема для изготовления вместительных носителей CF. В настоящее время такой необходимости нет и карты Туре II постепенно уходят с рынка. Отметим, что в накопители для карт Туре II можно устанавливать карты Туре I, тогда как обратное невозможно.

Среди флэш-карт бесспорным лидером по производительности была CF-карта Transcend Ultra Performance 25x CompactFlash 256 Мбайт, которую можно по праву считать эталоном скорострельности современных флэш-накопителей. Скорость последовательной/случайной записи у этой флэш-карты достигает 3.6/0.8 Мбайт/с, скорость чтения - 4,0/3,7 Мбайт/с.

Скорость работы CF-карт замедляется с увеличением объема, что хорошо видно на примере флэш-карт SanDisk CompactFlash 256 Мбайт и SanDisk CompactFlash 512 Мбайт. Двукратный рост емкости приводит к снижению производительности на 30%. за исключением скорости случайной записи, которая выросла в 2.5 раза, — это выглядит довольно странно и неожиданно.

Скоростные характеристики CF-карт так же сильно зависят от производителя. У Kingston CompactFlash 256 Мбайт — низкая скорость записи (последовательная/случайная запись — 1.4/0.3 Мбайт/с), но по скорости чтения она была лидером (4.4/3,8 Мбайт/с). Карта PQI Hi-Speed Compact Flash 256 Мбайт продемонстрировала среднюю производительность в обоих случаях: запись - 2.1/0.7 Мбайт/с, чтение - 3.8/3,3 Мбайт/с. Карты SanDisk CompactFlash 256 Мбайт и SanDisk CompactFlash 512 Мбайт работали очень медленно: запись - 1,1/0,2 и 0,9/0,5 Мбайт/с, чтение - 2,3/2,1 и 1,8/1,7 Мбайт/с. А карта Transcend Ultra Performance 25х CompactFlash 256 Мбайт записывала и считывала данные одинаково хорошо.

Если сравнивать CF-карты с накопителями других типов, то окажется, что флэш-память — совсем на такая медленная, как это принято считать! По производительности самые быстрые образцы флэш-памяти (в качестве эталона возьмем карту Transcend Ultra Performance 25х CompactFlash 256 Мбайт) сравнимы с Iomega Zip 750 Мбайт, а по скорости последовательной записи даже обгоняют этот накопитель более чем в 1,5 раза! По скорости последовательной записи флэш-память обгоняет диски CD-RW в 2 раза, по скорости последовательного чтения — на 10%! Флэш-память выигрывает у МО-дисков по скорости последовательной записи — в 2 раза — и случайного чтения — на 10%, однако отстает по скорости последовательного чтения и случайной записи — на 20%. Флэш-память отстает по скорости последовательной записи от DVD-дисков (при «прожигании» в режиме 4х) — в 1,4 раза.

Отметим, что если CF-карта используется в цифровой фотокамере, то для нее в первую очередь важна скорость последовательной записи — чем она выше, тем быстрее фотокамера вернется в рабочее состояние после «захвата» кадра и «сброса» его на флэш-карту. Впрочем, скорость чтения CF-карты в этом случае тоже важна, правда, не так критична — чем быстрее считываются данные, тем быстрее будет работать фотокамера в режиме просмотра отснятого материала.

SmartMedia.Конструкция карт SmartMedia (SM) чрезвычайно проста. В карте SM нет встроенного контроллера интерфейса и по сути — это одна или две микросхемы флэш-памяти, «упакованные» в пластиковый кожух. Стандарт SM был разработан компаниями Toshiba и Samsung в 1995 г. Интерфейс карт SM — параллельный, 22-контактный, но из них для передачи данных используется только восемь линий.

MultiMedia Card.Карты Multi-Media Card (MMC) имеют 7-контактный последовательный интерфейс, который может работать на частоте до 20 МГц. Внутри пластикового корпуса карты размещается микросхема флэш-памяти и контроллер ММС-интерфейса. Стандарт ММС предложен в 1997 г. компаниями Hitachi, SanDisk и Siemens.

SecureDigital Card.SecureDigi-tal Card (SD) — самый молодой стандарт флэш-карт: он был разработан в 2000 г. компаниями Matsushita, SanDisk и Toshiba. Фактически SD — это дальнейшее развитие стандарта ММС, поэтому карты ММС можно устанавливать в накопители SD (обратное будет неверным). Интерфейс SD — 9-контактный, последовательно-параллельный (данные могут передаваться по одной, двум или четырем линиям одновременно), работает на частоте до 25 МГц. Карты SD оснащаются переключателем для защиты их содержимого от записи (стандартом также предусмотрена модификация без такого переключателя).

Memory Stick. Стандарт флэш-карт с 10-контактным последовательным интерфейсом, работающим на частоте до 20 МГц, и переключателем для защиты от записи. Memory Stick (MS) активно продвигается на рынок компанией Sony, которая предложила его в 1998 г.

USB-флэш-память.USB-флэш-память (USB-память) — совершенно новый тип носителей на флэш-памяти, появившийся на рынке в 2001 г. По форме USB-память напоминает брелок продолговатой формы, состоящий из двух половинок — защитного колпачка и собственно накопителя с USB-разъемом (внутри него размещаются одна или две микросхемы флэш-памяти и USB-контроллер).

Работать с USB-памятью очень удобно — для этого не требуется никаких дополнительных устройств. Достаточно иметь под рукой ПК под управлением Windows с незанятым USB-портом, чтобы за пару минут «добраться» до содержимого этого накопителя. В худшем случае вам придется установить драйверы USB-памяти, в лучшем — новое USB-уст-ройство и логический диск появятся в системе автоматически. Возможно, что в будущем USB-память станет основным типом устройств для хранения и переноса небольших объемов данных.

Что же касается USB-флэш-памяти, то это, несомненно, более удобное решение для переноса данных, чем флэш-карты, — не требуется дополнительный флэш-накопитель. Однако производительность протестированных накопителей этого типа — Transcend JetFlash 256 Мбайт и Transcend JetFlashA 256 Мбайт — ограничивалась низкой пропускной способностью интерфейса USB 1.1. поэтому их показатели в тестах на скорость работы были довольно скромными. Если USB-флэш-память оснастить быстрым интерфейсом USB 2.0, то по «скорострельности» эти накопители, конечно, не уступят лучшим флэш-картам.

Интересно отметить, что по скорости последовательной записи флэш-память превосходит Iomega Zip 750, диски CD-RW и МО-носители и уступает только DVD-дискам. Это лишний раз подчеркивает, что разработчики флэш-памяти в первую очередь стремились увеличить скорость последовательной записи, поскольку флэш-память изначально предназначена для использования в цифровых фотокамерах, где прежде всего важен этот показатель.

В итоге можно заключить, что флэш-память — бесспорный лидер по надежности, мобильности и энергопотреблению среди накопителей небольшой и средней емкости, обладающий к тому же неплохим быстродействием и достаточным объемом (на сегодня на рынке уже доступны флэш-карты емкостью до 2 Гбайт). Несомненно, это очень перспективный тип, однако их широкое использование пока сдерживается высокими ценами.

23 вопрос (Программное обеспечение ПЗУ IBM PC. Программы POST, Boot Loader)

загрузочные устройства (IBM PC)

Загрузочное устройство это устройство, с которого загружается операционная система. Современные BIOS компьютер поддерживает загрузку с различных устройств, как правило, местные жесткий диск (или одной из нескольких разделах на таком диске), оптических дисков, устройств USB (флэш-диск, жесткий диск, оптический привод диска и т.д. ), или карта сетевого интерфейса (с использованием PXE). Раньше, менее распространенными загрузочными устройствами включать дисководы гибких дисков, SCSI устройствах, Zip дисков, и LS-120 дисков.

Как правило, BIOS позволяет пользователю настроить порядок загрузки. Если порядок загрузки установлен в положение "Во-первых, привод DVD-вторых, жесткий диск", то BIOS будет пытаться загрузить с диска DVD, и если это не удается (например, из-за отсутствия DVD в привод), она будет пытаться загрузиться с локального жесткого диска.

Например, на компьютере с Windows XP, установленной на жесткий диск, пользователь может установить порядок загрузки к приведенному выше, а затем вставить GNU / Linux Live CD, с тем чтобы попробовать Linux без необходимости устанавливать операционную систему на жесткий диск. Это является примером двойной загрузкой - пользователю выбор, какую операционную систему для запуска после того, как компьютер выполняет свою самотестирования. В этом примере двойной загрузкой, пользователь выбирает, вставляя или вынимая компакт-диск из компьютера, но он является более общим, чтобы выбрать, какую операционную систему для загрузки, выбрав из меню с помощью клавиатуры компьютера. (Обычно F11 или ESC

Загрузка последовательности на стандартном ПК (IBM PC-совместимый)

После запуска, персональный компьютер 'S x86 процессор выполняет инструкцию находится в памяти CS: IP FFFF: 0000 в BIOS, который находится на 0xFFFF0 адрес. Эта память места близок к концу 1 Мбайт системной памяти доступна в реальном режиме. Обычно он содержит инструкцию, которая Перейти выполнение переводов на место BIOS запуске программы. Эта программа запускается при включении питания самотестирования (POST) для проверки и инициализации необходимых устройств. BIOS проходит через предварительно настроен список Non-Volatile устройств хранения информации ( "Boot Device последовательность"), пока не обнаружит, что является загрузочным. Загрузочные устройства определяется как вывод, который можно читать, а последние два байта первого сектора содержать слова 0xAA55 (также известный как загрузочный подпись).

После того как нашла BIOS загрузочного устройства он загружает загрузочный сектор в шестнадцатеричный сегмента: офсетная адресу 0000:7 C00 или 07c0: 0000 (карты с тем же адресом Ultimate) и передает на исполнение загрузочного кода. В случае с жестким диском, это называется основной загрузочной записи (MBR) и часто не конкретной операционной системы. Код MBR обычной проверки таблицы разделов МБР для раздела, установить в качестве загрузочного (один с флагом активности) Если найден активный раздел, MBR код загружает кода загрузочного сектора от этого раздела и выполняет его. Загрузочный сектор часто операционная система конкретного, однако в большинстве операционных систем, его основная функция заключается в загрузке и исполнять операционную систему ядра, которое продолжается при запуске. Если нет активных разделов, или загрузочный сектор активного раздела является недействительным, MBR может загрузить вторичный загрузчик который будет выбрать раздел (нередко с помощью пользовательского ввода) и загружает загрузочный сектор, который обычно загружает соответствующие ядра операционной системы.

В некоторых системах (в частности, новых Макинтошей) использовать Intel 'S собственного EFI. Также Coreboot позволяет компьютеру загрузиться без сверхсложных прошивка / BIOS Постоянно работает в режиме управления системой. Наследие 16-битный интерфейс BIOS требуются определенные x86 операционных систем, таких как Windows XP, Vista, и 7. Однако большинство загрузчиков имеют 16-битную поддержку для этих унаследованных системах BIOS.

В старых компьютерах Windows, особенно те, кто управлял Windows 9x, если чипов BIOS присутствует, то он может или не может показать экран подробные BIOS производитель чипов, авторские права состоялась производитель чипа и идентификатор чипа при запуске. В то же время, она также показывает объем доступной памяти компьютера и других частей кода Отображение информации о компьютере.





Дата публикования: 2015-01-24; Прочитано: 3608 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...