Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Разнообразие форм жизни



Вспомним, что целлюлоза – это полисахарид, молекулы которого образуют тончайшие нити. Связь между соседними клетками у многоклеточных растений осуществляется благодаря тонким тяжам цитоплазмы, пронизывающим неуплотненные участки клеточной стенки.

Наличие плотной клеточной стенки препятствует образованию перетяжки при делении цитоплазмы клетки в телофазе митоза, как это было описано в § 35. Деление цитоплазмы на две части при митозе растительных клеток происходит путем формирования плазматической мембраны и клеточной стенки прямо внутри делящейся клетки – от центра к периферии.

В состав растительных клеток входят особые органеллы – пластиды. Как и митохондрии, они окружены не менее чем двумя мембранами, содержат короткую кольцевую ДНК, рибосомы и способны к самостоятельному делению. В функциональном отношении большинство разновидностей пластид так или иначе связаны с энергетикой клетки. В первую очередь это хлоропласты, в которых осуществляются реакции фотосинтеза.

Хлоропласты содержат хлорофилл, каротиноиды и необходимые для фотосинтеза белки. Хромопласты не содержат хлорофилла, но обогащены каротиноидами – желтыми, оранжевыми и красными пигментами, которые определяют окраску цветов, плодов и некоторых кореньев (морковь). И, наконец, лейкопласты бесцветны. В некоторых из них может синтезироваться и накапливаться крахмал, в других – запасы жира и белка. Лейкопласты, при определенных условиях, могут превращаться в хлоропласты и хромопласты, а хлоропласты – в хромопласты. С последним процессом связано осеннее изменение окраски листьев.

В типичной растительной клетке имеется одна или несколько центральных вакуолей, которые при сильном развитии могут вытеснять все остальное содержимое клетки на периферию. Вакуоли окружены мембраной, а их внутреннее содержимое сильно варьирует в клетках разных типов. Это могут быть запасные питательные вещества (сахара, растворимые белки), растворы необходимых клетке солей, аминокислоты и др. В вакуоли же выводятся и вредные продукты, образующиеся в результате обмена веществ, например, щавелевая кислота.

В вакуолях накапливаются и пигменты – антоцианы. В отличие от каротиноидов, они могут придавать растениям более широкий спектр оттенков – от розового до черно-фиолетового. Антоцианы обеспечивают красную и голубую окраску плодов (слива, вишня, виноград, брусника, земляника) и лепестков цветков (василек, герань, роза, пион). Кроме того, именно они окрашивают осенние листья в ярко-красный цвет. Осенью синтез хлорофилла в листьях прекращается. Антоцианы образуются в них преимущественно в холодную солнечную погоду. Поэтому наиболее яркая окраска листьев бывает холодной и ясной осенью. При более теплой и влажной погоде окраска осенних листьев в большей степени определяется каротиноидами и доминирующим тоном оказывается желтый.

Растительная клетка имеет принципиально то же строение, что и животная. Отличительной особенностью растительной клетки является наличие клеточной стенки, пластид и вакуолей.

Клетка как организм и клетка в составе организма. Когда мы знакомились с уровнями организации живых систем, то отмечали, что клетка может функционировать как самостоятельный организм, или входить в состав многоклеточного организма или колонии. Во всех этих случаях клетка обладают специфическими чертами в своей организации. У одноклеточных эукариот имеются органеллы, которые необходимы им для самостоятельного существования, и которые никогда не встречаются у клеток многоклеточных организмов. Это могут быть пигментные глазки, жгутики и реснички, упорядоченные определенным образом для обеспечения плавания, клеточный рот (особый участок цитоплазмы, которым некоторые хищные простейшие захватывают добычу); специализированные цитоскелетные образования (например, у некоторых паразитических жгутиконсцев имеется своеобразный внутренний скелет в виде толстого пучка плотно упакованных микротрубочек) и многое другое.

Основная черта клеток, формирующих многоклеточный организм, заключается в их специализации. Особенно отчетливо это проявляется на тканевом уровне организации высших растений и животных. Клетки каждой ткани ясно дифференцированы, т. е. приспособлены к выполнению какой-либо одной основной функции или немногих функций, что определяет и их структурные особенности. Более того, составляющие ткани растений и животных дифференцированные клетки, как правило, теряют способность к размножению. Они функционируют определенное время, а затем погибают. В большинстве тканей имеется некоторый запас способных к делению недифференцированных клеток. Они производят новые клетки, которые, пройдя определенный этап дифференциации, заменяют собой погибшие клетки данной ткани.

Клетки одноклеточных эукариот, помимо обычного набора органелл, обладают рядом специфичных структур обеспечивающих их существование как самостоятельных организмов. В составе тканей клетки дифференцированы к выполнению определенных функций. Эта специализация необратима и пополнение тканей новыми клетками происходит в результате деления и последующей специализации недифференцированных клеток.

Специфика клетки прокариот. Бактериальная клетка принципиально отличается от рассмотренных нами клеток эукариотических организмов. Различия эти касаются отнюдь не размеров, которые для большинства бактерий составляют 1–10 мкм. Это вполне сопоставимо с размерами некоторых типов клеток эукариот. А вот строение и связанные с этим особенности функционирования бактериальной клетки оказываются совершенно иными.

Прежде всего, у бактерий отсутствуют не только оформленное ядро, но и все остальные клеточные компартменты – основа структурно-функциональной организации клеток эукариот. Различия обнаруживаются даже в строении мембраны, окружающей клетку бактерий. Вещества попадают в бактерию и выводятся из нее только благодаря диффузии.

Надмембранные структуры бактерий формируют вокруг них жесткую клеточную стенку. Она обладает избирательной проницаемостью, через клеточную стенку проходят необходимые бактерии питательные вещества и выводятся конечные продукты обмена веществ. Поверх клеточной стенки бактерии формируют еще и слизистую капсулу, которая служит дополнительной защитой от неблагоприятных факторов среды, в том числе предохраняет от высыхания.

Рибосомы бактерий имеют несколько иной белковый состав, чем рибосомы клеток эукариот. Имеются различия и в рибосомных РНК. Важной отличительной чертой цитоплазмы бактерий служит и отсутствие в ней цитоскелета.

Некоторые бактерии снабжены жгутиком, который не имеет ничего общего ни по строению, ни по особенностям функционирования с одноименной структурой эукариот (подробнее см. в § 00).

Наконец, генетический аппарат бактерий, так называемый нуклеоид, представлен замкнутой в кольцо молекулой ДНК, которая свободно лежит в цитоплазме. Нуклеоид прикреплен к внутренней стороне бактериальной мембраны. Перед началом деления бактерии происходит репликация кольцевой ДНК и два образовавшихся нуклеоида «разъезжаются» по мембране в разные стороны. Затем мембрана и клеточная стенка впячиваются и перешнуровывают бактериальную клетку надвое. В каждой из образовавшихся клеток оказывается свой нуклеоид.

Клетки прокариот лишены оформленного ядра и клеточных компартментов. Их генетический аппарат (нуклеоид) представлен кольцевой молекулой ДНК, которая свободно лежит в цитоплазме и прикреплена одним из своих участков к внутренней стороне мембраны, окружающей бактерию.

Неклеточная форма жизни – вирусы. Впервые о существовании вирусов узнали в 1892 г., когда русский ботаник Д. И. Ивановский обнаружил, что заболевание табака, так называемую табачную мозаику, вызывает возбудитель, проходящий через бактериальные фильтры, т. е. он существенно по размеру меньше бактерий. Действительно, размеры большинства вирусов варьируют в пределах 15 – 300 нм. В простейшем случае вирус состоит из небольшой молекулы ДНК (ДНК-содержащие вирусы) или РНК (РНК-содержащие вирусы), окруженной защитной белковой оболочкой – капсидом.

Вирусная частица способна существовать длительное время и при широком диапазоне внешних условий. Однако самостоятельно воспроизводить себя вирусы не могут, поскольку не содержат тех структур и ферментов, которые обеспечивают процессы, связанные с репликацией нуклеиновых кислот и биосинтезом белков. Последовательность нуклеотидов ДНК или РНК вирусов кодирует только информацию о белках капсида и нескольких (далеко не всех!) ферментах, необходимых для репликации вирусной нуклеиновой кислоты.

Поэтому основная задача вируса – это попасть в клетку-хозяина. Процесс этот может происходить случайно, например, с жидкостью при пиноцитозе. Однако большинство вирусов способны распознавать именно те клетки, в которых они способны воспроизводиться.

Иной путь проникновения характерен для вирусов бактерий – бактериофагов. Мы уже отмечали в предыдущем разделе этого параграфа, что бактерии не способны ни к фагоцитозу, ни к пиноцитозу. Поэтому путь в бактериальную клетку внутри мембранного пузырька для бактериофагов закрыт. Капсид бактериофага устроен как своеобразный шприц, прокалывающий клеточную стенку и мембрану бактерий и впрыскивающий внутрь свою ДНК или РНК.

Вирус представляет собой молекулу ДНК или РНК, окруженную белковой оболочкой. Воспроизводство вирусов возможно только в клетках, где они используют имеющиеся клеточные системы для синтеза собственных белков и репликации своей ДНК или РНК. Вирусная ДНК способна встраиваться в геном хозяина, что может приводить к явлению горизонтального переноса генетической информации. При сравнении клеточных и неклеточных форм жизни вы убедились, что в Природе не существует не востребованных для функционирования биосферы структур. На разнообразии форм жизни основана устойчивость биоферы.

Образ Жизни Многие вирусы и бактерии гибнут под воздействием ультрафиолетового излучения. Во время эпидемий, вызванных вирусами, полезно проводить кварцевание помещения. При отсутствии соответствующих приборов необходимо регулярно проветривать помещение и делать влажную уборку.




Дата публикования: 2015-01-23; Прочитано: 1340 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.072 с)...