![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Все изображения можно подразделить на две группы — с палитрой и без нее. У изображений с палитрой в пикселе хранится число — индекс в некотором одномерном векторе цветов, называемом палитрой.
Чаще всего встречаются палитры из 16 и 256 цветов. Изображения без палитры бывают в какой-либо системе цветопредставления и в градациях серого (grayscale). Самой распространенной является система RGB. Существуют и другие системы цветопредставления, такие, как CMYK, YUV и т.п. Для того, чтобы корректнее оценивать степень сжатия, нужно ввести понятие класса изображений. Под классом будет пониматься некая совокупность изображений, применение к которым алгоритма архивации дает качественно одинаковые результаты. Например, для одного класса алгоритм дает очень высокую степень сжатия, для другого — почти не сжимает, для третьего — увеличивает файл в размере.
Рассмотрим следующие примеры неформального определения классов изображений:
Класс 1. Изображения с небольшим количеством цветов (4-16) и большими областями, заполненными одним цветом. Плавные переходы цветов отсутствуют. Примеры: деловая графика — гистограммы, диаграммы, графики и т.п.
Класс 2. Изображения, с плавными переходами цветов, построенные на компьютере. Примеры: графика презентаций, эскизные модели в САПР, изображения, построенные по методу Гуро.
Класс 3. Фотореалистичные изображения. Пример: отсканированные фотографии.
Класс 4. Фотореалистичные изображения с наложением деловой графики. Пример: реклама.
Достаточно сложной и интересной задачей является поиск наилучшего алгоритма для конкретного класса изображений.
Дата публикования: 2015-02-03; Прочитано: 401 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!