Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Резона́нс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.
В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.
Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.
Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.
59. Электромагнитная волна в вакууме…
Рассмотрим электромагнитное поле в той области пространства, где отсутствуют источники , - свободное электромагнитное поле. В этом случае электрическое и магнитное поля подчиняются однородной системе уравнений Максвелла:
. (9.1)
Вычисляя и используя выражение для , получим волновое уравнение:
. (9.2)
Аналогичное уравнение получается и для магнитного поля . Таким образом, все характеристики свободного электромагнитного поля подчиняются волновым уравнениям. Волновые решения уравнения (9.2) описывают процесс распространения электромагнитного поля в пространстве – электромагнитные волны.
Здесь существенны следующие два момента. 1. Электромагнитная волна способна распространяться в вакууме и не требует наличия какой-либо среды в пространстве, как, например, акустические волны. 2. Амплитуда волны обратно пропорциональна расстоянию, а ее интенсивность (энергия) обратно пропорциональна квадрату расстояния.
Для характеристик электромагнитного поля имеем следующие решения волнового уравнения:
(9.4)
Электромагнитная волна является поперечной, т.е. векторы лежат в плоскости перпендикулярной оси (перпендикулярны единичному вектору , вдоль которого распространяется волна)
Итак, для электромагнитной волны
. (9.7)
Электрическое и магнитное поля в плоской электромагнитной волне изменяются в пространстве и во времени синфазно. Электромагнитная волна является поперечной волной: векторы и лежат в плоскости перпендикулярной направлению распространения волны, перпендикулярны друг другу и их модули равны.
Электромагнитная волна называется монохроматической, если переменные поля меняются со временем по гармоническому закону. Для плоской монохроматической волны
. (9.8)
Здесь - амплитуда, циклическая частота и начальная фаза, соответственно. Начальную фазу удобно сразу принять за нуль (выбор начала отсчета времени). Введем волновое число
. (9.9)
Тогда
. (9.10)
Если ввести волновой вектор
, (9.11)
то последнюю формулу можно представить в виде:
. (9.12)
Последняя формула описывает волну, распространяющуюся в произвольном фиксированном направлении, которое задается единичным вектором .
Пусть вектор в электромагнитной волне остается в процессе ее распространения параллельным некоторому постоянному вектору , который называется вектором поляризации. В этом случае волна называется линейно поляризованной. Для плоской монохроматической линейно поляризованной волны окончательно имеем:
.
Коэффициент при второй производной по времени, есть величина, обратная квадрату фазовой скорости волны. Для электромагнитной волны фазовая скорость из волновых уравнений
.
В вакууме и тогда м/с. Знасит, в среде фазовая скорость
60. Поляризация…
Перейти к: навигация, поиск
Поляризация — для электромагнитных волн направление колебаний вектора электрической индукции E. Когерентное электромагнитное излучение может иметь:
Линейную поляризацию — в направлении, перпендикулярном направлению распространения волны;
Круговую поляризацию — правую либо левую, в зависимости от направления вращения вектора индукции;
Эллиптическую поляризацию — случай, промежуточный между круговой и линейными поляризациями.
Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.
При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально. Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.
Линейная | Круговая | Эллиптическая |
Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.
Свет солнца, являющийся тепловым излучением, не имеет поляризации, однако рассеянный свет неба приобретает частичную линейную поляризацию. Поляризация света меняется также при отражении. На этих фактах основаны применения поляризующих фильтров в фотографии и т. д.
Линейную поляризацию имеет обычно излучение антенн.
По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца. Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. На этом принципе работают жидкокристаллические экраны.
Дата публикования: 2015-02-03; Прочитано: 810 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!