Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Уравнения магнитного поля в интегральной и дифференциальной формах



Магнитное поле характеризуется двумя векторными величинами:

– вектор напряженности магнитного поля, создается электрическими токами, явля­ется первопричиной магнитного поля [А/м];

– вектор индукции магнитного поля или плотность магнитных силовых линий [Тл].

Между векторами и существует связь:

,

где m 0 = 4×p×10-7 » 1,257× 10-6 [Гн/м] - магнитная проницаемость пустоты, m - относитель­ная магнитная проницаемость.

Известный из курса физики закон Био-Савара-Лапласа устанавливает связь между элементар­ным вектором магнитной индукции в произвольной точке про­странства и элементом тока (рис. 274):


На основе закона Био-Савара-Лапласа выполняется расчет магнитного поля слож­ных систем проводников с токами.

Закон Ампера определяет силу взаимодействия магнитного поля на эле­мент провод­ника с током:

,

откуда следует, что сила, действующая на проводник, равна

.

На прямолинейный проводник с током I в равномерном магнитном поле действует сила , направление которой определяется по правилу левой руки.

1 –й закон Кирхгофа для магнитной цепи, выражающий непрерывность магнитных силовых линий поля, имеет вид:

- интегральная форма уравнения непрерывности магнитных линий.


Преобразуем это уравнение по теореме Остроградского-Гаусса:

- дифференциальная форма уравнения непрерывности магнитных линий.  

Закон полного тока для магнитного поля имеет вид:

- интегральная форма закона полного тока. Преобразуем левую часть этого уравнения по теореме Стокса: , а в пра­вой части получим: . Следовательно:

дифференциальная форма закона полного тока.

Граничные условия в магнитном поле на границе раздела двух сред с раз­личными магнитными проницаемостями m 1 и m 2 выражаются уравнениями:

На границе раздела двух сред равны нормальные составляющие вектора В и танген­циальные составляющие вектора Н.

Магнитное поле несет в себе энергию, плотность которой определя­ется уравне­нием:

[ Дж/м3]

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФГБОУ ВПО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ЗАУРАЛЬСКИЙ ФИЛИАЛ Экзаменационный билет №17 Кафедра: ФИЗИКИ, МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Дисциплина: Теоретические основы электротехники Направления «Агроинженерия» II курс УТВЕРЖДЕНО НА ЗАСЕДАНИИ КАФЕДРЫ «» 2012 г. Зав. кафедрой ____________Музафаров С. М.      

Мощности в трехфазной системе.

Магнитное поле двухпроводной линии.

Задача.

1. Мощности в трёхфазной системе.

Определяющим при расчёте мощностей в электрических цепях является уравнение баланса мощности. Оно является выражением закона сохранения энергии. В переменных синусоидальных токах это баланс полной мощности. Он записывается по составляющим: равенству активной и реактивной мощностей источников и потребителей. Общий случай расчёта полной мощности трёхфазной сети как источника может быть выполнен символическим методом. Для каждого из фазных напряжений сети его положительное направление и положительное направление линейного тока противоположны. Значит каждое из фазных напряжений сети - источник. Уравнение расчёта полной мощности сети как источника:

Где IA*, IB*, IC* сопряженные комплексы выражений линейных токов. Все элементы R,XL,XC рассматриваемой схемы являются потребителями либо активной, либо реактивной мощности:

где I - действующее значение токов.

Баланс заключается в равенстве . Расчет баланса мощности указан в примере (9). При симметричной нагрузке применяются более простые выражения мощности в действительных числах. Независимо от соединения треугольником или звездой суммарная мощность для трёх фаз потребителя равна:

В данное равенство вводятся линейные напряжение и ток. Если фазы потребителя соединены треугольником, то:

Если фазы потребителя соединены звездой, то:

В обоих случаях оказывается:

Под Р в уравнении (11) иметься в виду мощность потребляемая из сети, то есть мощность источника. Полная и реактивная мощности соответственно будут выражены:

2. Магнитное поле двухпроводной линии

По двухпроводной линии с заданными геометрическими размерами (рис. 277) (R – радиус проводов, d - расстояние между осями проводов) протекает по­стоянный ток I.


Результирующий вектор магнитной индукции в произвольной точке n можно определить по методу наложения как геометрическую сумму состав­ляющих этого вектора и от каждого провода в отдельности: = + . Составляющие вектора и определяются по полученным ранее формулам, а их направления – по правилу правоходового винта:

,

Результирующую индуктивность линии на единицу длины можно найти как сумму индуктивностей прямого и обратного провода:

L = L 1 + L 2 = 2 L внут + 2 L внеш = .

При определении внешней индуктивности провода, внешний радиус ин­тегрирования R следует принять равным расстоянию между проводами d.

Если провода линии выполнены из неферромагнитного материала (Сu, Al) то m =1 и формула для индуктивности линии получит вид:

[ Гн / м ]

В схемах замещения трехфазных линий электропередачи учитывается ин­дуктивность одного провода (фазы), следовательно:

[ Гн / м ] – индуктивность каждого провода (фазы) трех­фаз­ной транспонированной ЛЭП на единицу длины, где – среднегеометрическое значение межосевых расстояний проводов.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФГБОУ ВПО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ЗАУРАЛЬСКИЙ ФИЛИАЛ Экзаменационный билет №18 Кафедра: ФИЗИКИ, МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Дисциплина: Теоретические основы электротехники Направления «Агроинженерия» II курс УТВЕРЖДЕНО НА ЗАСЕДАНИИ КАФЕДРЫ «» 2012 г. Зав. кафедрой ____________Музафаров С. М.      

Причины возникновения периодических несинусоидальных ЭДС, токов и напряжений.

Диэлектрическая вязкость.

Задача.





Дата публикования: 2015-01-26; Прочитано: 535 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...